
MallobSat naps in the SAT Competition 2025
Dominik Schreiber Niccolò Rigi-Luperti

Institute of Information Security and Dependability
Karlsruhe Institute of Technology

Karlsruhe, Germany
{dominik.schreiber , niccolo.rigi-luperti}@kit.edu

Armin Biere
Chair of Computer Architecture

University of Freiburg
Freiburg i.Br., Germany
biere@cs.uni-freiburg.de

Abstract—We present the 2025 version of the parallel and
distributed SAT solver MALLOBSAT to participate in this year’s
parallel track of the SAT Competition.

Index Terms—SAT solving, HPC, preprocessing

I. INTRODUCTION

Since SAT Competition 2025 does not feature a massively
parallel / distributed / cloud track, the distributed solving
features of MallobSat [7] remain un(con)tested this time –
hence one might say that our system takes a nap this year.
Still, we prepared a lightweight submission of single-process
MallobSat to the parallel track. We use the same general setup
and process layout as MallobSat in last year’s parallel track [4]
and integrated the 2024 solver backend of Kissat [2].

II. NAPS

We introduce a new solving approach we call “naps” (“not
a portfolio solver!”). The central features of this setup are:

• We run four YalSAT [1] local search solvers and p−4 =
60 uniform Kissat solver threads. Across all threads, all
pre– and inprocessing features are switched off, as well
as the solver-specific (“native”) cycled diversification of
earlier years. The only kind of diversification we employ
for the Kissat threads is very light: setting different
random seeds and sparsely setting some random variable
phases. This setup clearly departs from a classical “solver
portfolio” and, in our view, should rather be considered
a uniform parallel CDCL procedure with clause sharing
acting as search space pruning. The few additional lo-
cal search threads serve as independent “needle-in-the-
haystack” searchers for a satisfying assignment.

• We employ a singular a-priori sequential preproces-
sor (not unlike the BVA performed in PL-PRS-BVA-
KISSAT [3]), which uses Kissat’s full preprocessing arse-
nal, as well as some preprocessing in Lingeling (Cardinal-
ity Constraint reasoning and Gaussian elimination). This
allows to at times immediately recognize (un)satisfiability
or, otherwise, simplify the formula. While this prepro-
cessing is running, we already run a solving task at all
(other) threads on the original formula. When prepro-
cessing is done, we evict this solving task and replace
it with a solving task that operates on the preprocessed
formula instead. Any model reported by the latter task is
transformed back into a model for the original formula.

• We replace MallobSat’s strategy of incrementing incom-
ing clauses’ LBD values [7] with the simpler strategy of
resetting all LBD values of clauses to their maximum
once they are produced. This functionally disables all
roles of LBD values in our clause sharing – in recent
experiments we did not observe any loss in performance
this way, while it simplifies the sharing logic.

We describe and evaluate (a slightly earlier version of) this
setup in depth in our SAT’25 publication [6]. Note that Kissat
is the only CDCL implementation we employ – we only use
Lingeling’s preprocessing and local search (YalSAT). As a side
effect, this reduces the active code, simplifying maintenance
and streamlining future research (also and especially in the
distributed setting). We do not submit a version of our real-
time proof-checking setup [4, 5] since the preprocessing does
not yet support proof production. As a next step, we intend
to replace our current preprocessing with proof-producing
preprocessing and integrate it in our trusted solving pipeline.

ACKNOWLEDGMENT

The authors gratefully acknowledge the Gauss Centre for
Supercomputing e.V. (www.gauss-centre.eu) for funding this
project by providing computing time on the GCS Super-
computer SuperMUC-NG at Leibniz Supercomputing Centre
(www.lrz.de). Research reported in this work was supported
by an Amazon Research Award (Fall 2023).

REFERENCES

[1] Armin Biere. “Yet another local search solver and Lingeling and friends
entering the SAT Competition 2014”. In: SAT Competition. 2014, p. 65.

[2] Armin Biere et al. “CaDiCaL, Gimsatul, IsaSAT and Kissat entering the
SAT Competition 2024”. In: SAT Competition 2024: Solver, Benchmark
and Proof Checker Descriptions (2024), pp. 8–10.

[3] Mazigh Saoudi et al. “PL-PRS-BVA-KISSAT in SAT Competition
2024”. In: Pragmatics of SAT. 2024. URL: https : / / dl . lre . epita . fr /
papers/saoudi.24.pos.pdf.

[4] Dominik Schreiber. “MallobSat and MallobSat-ImpCheck in the SAT
Competition 2024”. In: SAT Competition 2024: Solver, Benchmark and
Proof Checker Descriptions (2024), pp. 22–23.

[5] Dominik Schreiber. “Trusted Scalable SAT Solving with on-the-fly
LRAT Checking”. In: Theory and Applications of Satisfiability Testing
(SAT). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. 2024,
25:1–25:19. DOI: 10.4230/LIPIcs.SAT.2024.25.

[6] Dominik Schreiber, Niccolò Rigi-Luperti, and Armin Biere. “Stream-
lining Distributed SAT Solver Design”. In: Theory and Applications of
Satisfiability Testing (SAT). 2025, 23:1–23:23. DOI: 10.4230/LIPIcs.
SAT.2025.23.

[7] Dominik Schreiber and Peter Sanders. “MallobSat: Scalable SAT Solv-
ing by Clause Sharing”. In: Journal of Artificial Intelligence Research
80 (2024), pp. 1437–1495. DOI: 10.1613/jair.1.15827.

https://dl.lre.epita.fr/papers/saoudi.24.pos.pdf
https://dl.lre.epita.fr/papers/saoudi.24.pos.pdf
https://doi.org/10.4230/LIPIcs.SAT.2024.25
https://doi.org/10.4230/LIPIcs.SAT.2025.23
https://doi.org/10.4230/LIPIcs.SAT.2025.23
https://doi.org/10.1613/jair.1.15827

	Introduction
	Naps

