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Abstract

Maximum Satisfiability (MaxSAT) is an essential framework
for combinatorial optimization at the core of automated rea-
soning. However, to date, no notable parallelizations with
convincing scaling behaviour exist. We suggest to exploit
and transfer recent advances in massively parallel SAT solv-
ing to perform scalable solution improving search (SIS) for
MaxSAT solving. Building upon the distributed job schedul-
ing and SAT solving platform MALLOB, we present the first
MaxSAT solver that scales to hundreds of cores through a
careful combination of parallel and distributed incremental
SAT solving, task parallelism and flexible load balancing, and
clause sharing within and across SAT solving tasks. Experi-
ments on up to 768 cores (16 nodes) show that our approach
clearly outscales state-of-the-art SIS-based MaxSAT solvers,
marking a new baseline for parallel MaxSAT solving.

Introduction
Boolean satisfiability (SAT) solving is an essential tool at
the core of automated reasoning (Fichte et al. 2023) where
a propositional formula is searched for a consistent solution
or shown to be unsatisfiable. Whenever an application fea-
tures a notion of quality, i.e., some quantified cost or merit
of solutions, Maximum Satisfiability (MaxSAT) is the prob-
lem of finding optimal or near-optimal solutions. MaxSAT
solvers, which, in essence, search for a solution that mini-
mizes a linear objective function, have seen many successful
applications (Bacchus, Järvisalo, and Martins 2021; Li and
Manyà 2021), such as automaton minimization (Heizmann,
Schilling, and Tischner 2017), explainable AI (Ignatiev et al.
2022), or train scheduling (Lemos et al. 2024).

While there have been recent developments in MaxSAT
via Branch&Bound (Li et al. 2021), the clear majority of
the state-of-the-art MaxSAT solvers are SAT-based, i.e., re-
duce the optimization problem to a sequence of decision
problems, which, in turn, are tackled with a CDCL SAT
solver (Bacchus, Järvisalo, and Martins 2021; Berg et al.
2024; Marques-Silva, Lynce, and Malik 2021). Out of these,
we focus on so-called solution-improving search (SIS) (Eén
and Sörensson 2006; Paxian, Reimer, and Becker 2018),
which repeatedly queries a SAT solver for solutions of in-
creasing quality until an optimal one is found.
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Exploiting parallel and distributed hardware for SAT solv-
ing has long been an active area of research, aiming to push
the frontier of problems that are feasible to solve (Böhm
and Speckenmeyer 1996; Balyo and Sinz 2018). Distributed
SAT solvers based on careful clause sharing have recently
reduced running times of diverse difficult instances from
hours to seconds using thousands of cores at once, also be-
ing able to conquer instances that were previously infeasi-
ble (Schreiber and Sanders 2024). This scalable SAT solv-
ing is coupled with flexible task parallelism: Solving many
SAT instances at once boosts resource efficiency and reduces
mean response times (Sanders and Schreiber 2022). By con-
trast, there has been significantly less work on effective par-
allelization of MaxSAT (Lynce, Manquinho, and Martins
2018). Specifically, we are unaware of any published work
describing parallel or distributed versions of the algorithms
featured in the annual MaxSAT Evaluations of the last eight
years, any solvers aimed at more than 32 threads, or any
distributed solvers that would support weighted problems,
i.e., the minimization of objectives with varying coefficients.
Solvers in the current MaxSAT Evaluations only parallelize
heuristics of the main algorithm or run an IP solver on a sep-
arate thread as a solver portfolio (Berg et al. 2024).

Regarding SIS in particular, prior approaches that test a
fixed number of bounds in parallel (Terra-Neves, Lynce, and
Manquinho 2016) achieve little speedup because they fail to
accelerate individual bound tests. Conversely, testing a se-
quence of bounds with a parallel SAT solver was so far hin-
dered by the parallel solvers’ high upstart overhead per call,
which proves wasteful for most calls. These two methods
were never combined, and achieving good resource utiliza-
tion has been an unsolved challenge so far. Our central find-
ing is the observation that flexible scheduling of incremental
SAT solving tasks can address all of these issues at once.

In this work, we propose the first architecture for gen-
eral (i.e., partial weighted) MaxSAT solving that is suit-
able for massively parallel and distributed scales. Exploit-
ing the distributed SAT solving and job scheduling frame-
work MALLOB (Sanders and Schreiber 2022), our SIS ap-
proach makes several incremental SAT calls in parallel, and
the available parallel resources are dynamically assigned to
the currently active SAT calls. We generalize a prior parallel
bound testing scheme for MaxSAT and enhance it based on
empirical observations. We also present a two-level hierar-



chical clause-sharing approach within and across different
SAT calls. In our experimental evaluation, our prototypical
solver clearly outperforms the sequential state-of-the-art SIS
MaxSAT solver PACOSE (Paxian, Reimer, and Becker 2018)
and is able to scale up to 768 cores, marking a significant ad-
vancement for parallel and distributed MaxSAT solving.

The paper at hand is structured as follows. First, we pro-
vide crucial background knowledge for our work. We then
present our distributed architecture and relate it to prior
work. Lastly, we report on an experimental evaluation of our
framework and present concluding remarks.

Background
In the following, we provide some important preliminaries.

Maximum Satisfiability
A literal ℓ is a {0, 1}-valued variable x or its negation ¬x. A
clause C = ℓ1∨. . .∨ℓk is a disjunction of literals. A formula
in conjunctive normal form (CNF) F = C1 ∧ . . . ∧ Cm is a
conjunction of clauses. We can think of clauses (formulas) as
sets of literals (clauses) to disregard ordering and repetitions.

A (truth) assignment α maps variables to 0 or 1. We can
write truth assignments as the set of literals they assign to
1. The semantics of truth assignments are extended to nega-
tions of variables ¬x, clauses C, and formulas F in the stan-
dard way: α(¬x) = 1−α(x), α(C) = max{α(ℓ) | ℓ ∈ C},
and α(F ) = min{α(C) | C ∈ F}. A formula F is satisfied
by an assignment α if α(F ) = 1 and is satisfiable if some as-
signment satisfies it. The Boolean satisfiability (SAT) prob-
lem asks to decide if a given formula is satisfiable.

We consider the general maximum satisfiability problem,
i.e., Weighted Partial MaxSAT. The following objective-
based definition is equivalent to the classical definition with
hard and soft clauses via a straightforward conversion (Bac-
chus, Järvisalo, and Martins 2021).

An objective O ≡
∑

iwiℓi is a pseudo-Boolean expres-
sion where each ℓi is a literal with a positive integer weight
wi. The value α(O) of O under assigment α is

∑
iwiα(ℓi).

|O| refers to the number of terms in O.
A MaxSAT instance (F,O) features a CNF formula F

and an objective O. An assignment α that satisfies F is a
solution of the instance and has cost α(O). α is optimal if
it minimizes cost over all solutions. The goal is to compute
an optimal solution, i.e., to minimize O subject to F . An
instance’s optimal cost is the cost of its optimal solution(s).
Example 1. The MaxSAT instance (F,O) with F ≡ {(x1 ∨
x2), (x2 ∨ ¬x3)} and O ≡ 1x1 + 4x2 + 2¬x3 has optimal
solution {x1,¬x2,¬x3} with cost 3.

Reified Encodings of Objectives. Given an objective O
and a set of (positive) cost values B, CNF(O,B) denotes
an abstract pseudo-Boolean (PB) encoding (Warners 1998;
Bailleux and Boufkhad 2003; Eén and Sörensson 2006;
Joshi, Martins, and Manquinho 2015; Paxian, Reimer, and
Becker 2018) of O for the values in B, i.e., a CNF formula
that defines output variables ok for each k ∈ B. The ok are
indicators for the value of O under satisfying assignments of
CNF(O,B); any assignment α that satisfies CNF(O,B) sets
α(ok) = 0 iff α(O) ≤ k. Incremental PB-encodings allow

to add cost values to B and extend CNF(O,B) lazily in each
iteration just as needed (Martins et al. 2014; Paxian, Reimer,
and Becker 2018).

Incremental SAT Solving. Incremental SAT solving un-
der assumptions (Eén and Sörensson 2003) allows to effi-
ciently solve a sequence of related SAT instances. Clauses
can be supplied to the SAT solver in between solving calls
and are permanent once added. Each solving call can be pro-
vided with a set of assumption literalsA, which are enforced
for this call only. This interface allows solvers to retain valu-
able learned information across solving calls.

We write SolveInc(F,A) for an (incremental) SAT
solving call, which returns a tuple (sat?, α). If the Boolean
sat? is TRUE, α is a solution to F that assigns α(ℓ) = 1 for
all ℓ ∈ A. If sat? is FALSE, no such solution exists.

Solution Improving MaxSAT
Algorithm 1 details a slight generalization of solution-
improving search (SIS), also called SAT/UNSAT search, for
MaxSAT. Invoked on an instance (F,O), the algorithm first
calls a SAT solver on F without assumptions (l. 2). If sat? is
FALSE, no solutions to the instance exist and the algorithm
stops (l. 3). Otherwise, the call returns a solution αbest := α,
which provides an upper bound ub := α(O) on the optimal
cost. Line 4 also initializes the lower bound on the optimal
cost to 0 and an initially empty set B of encoded cost values.

The main loop (l. 5-10) iterates until an optimal solution
is found. First, a query NextBound yields the next bound
b to test (l. 6). Then, a working formula FW is constructed
or updated to feature the clauses of the instance and a PB-
encoding for testing bound b (l. 7). The SAT solver is in-
voked on FW while assuming the negation of the output
variable ob corresponding to b (l. 8). If the SAT solver reports
sat? = FALSE, no solutions of cost ≤ b exist, so the lower
bound lb is increased to b+ 1 (l. 9). Otherwise (if the solver
returns a solution), the best-known solution αbest and the
upper bound ub are updated (l. 10). Once lb = ub, we know
that αbest is optimal and the algorithm terminates (l. 11).

In sequential SIS, NextBound returns ub − 1, i.e., the
highest yet untested value for the optimal cost. This results
in a sequence of satisfiable queries, yielding new solutions;
only the final query is unsatisfiable. The resulting number

1 Solution-Improving-Search
Input: An instance (F,O)
Output: An optimal solution αbest to (F,O)

2 (α, sat?)← SolveInc(F, ∅);
3 if sat? = FALSE then return “no solutions”;
4 lb← 0; ub← α(O); αbest ← α; B ← ∅;
5 while ub ̸= lb do
6 b← NextBound(ub, lb);
7 B ← B ∪ {b}; FW ← F ∪ CNF(O,B);
8 (α, sat?)← SolveInc(FW , {¬ob});
9 if sat? = FALSE then lb← b+ 1;

10 else ub← α(O); αbest ← α;
11 return αbest

Algorithm 1: MaxSAT Solution-improving search (SIS)



of iterations can be linear in the sum of weights in O. In
practice, many MaxSAT instances take significantly fewer
iterations since the solution found by a solver is often lower
than the enforced bound b, which shortcuts the search.

Example 2. On the instance from Example 1, sequen-
tial SIS might find the initial solution {x1, x2, x3} with
cost 5. Next, it will perform the SAT call SolveInc(F ∪
CNF(O, {4}), {¬o4}). Assume that the optimal solution
with cost 3 is found. Then the SAT call SolveInc(F ∪
CNF(O, {4, 2}), {¬o2}) will terminate the algorithm by re-
porting unsatisfiability.

Distributed SAT Solving
In distributed computing, several physical machines are used
for a single computation. Since these machines usually have
no shared main memory, their coordination commonly takes
place via message passing over a network interface.

The earliest approaches to parallel SAT solving have been
for distributed setups, achieving parallelism by splitting the
input into disjoint sub-formulas and solving them in paral-
lel (Böhm and Speckenmeyer 1996). While this paradigm is
situationally powerful (Heisinger, Fleury, and Biere 2020),
many real-world instances are difficult to split evenly, re-
sulting in poor load balancing and in redundant work per-
formed (Schulz and Blochinger 2010). Another approach,
which gained traction in the early 2000s mostly for shared-
memory parallelism, is portfolio solving (Hamadi, Jabbour,
and Sais 2010): several solvers search the original formula
with differing approaches, heuristics, or random seeding.

Many portfolio-style parallelizations exploit a crucial fea-
ture of their sequential SAT solvers, which mostly em-
ploy the so-called Conflict-Driven Clause Learning (CDCL)
algorithm (Marques-Silva, Lynce, and Malik 2021). Dur-
ing their search, CDCL solvers learn redundant clauses
from the conflicts they encounter. Intuitively, these conflict
clauses represent a pruned sub-space of the search space,
and their careful bookkeeping is crucial for performance.
Parallel solver threads can share conflict clauses among
one another, which results in effective cooperation (Ba-
lyo and Sinz 2018). This clause-sharing portfolio approach
was adapted to massively parallel systems with HORDE-
SAT (Balyo, Sanders, and Sinz 2015)—running thousands of
solvers and periodically exchanging selected conflict clauses
in an all-to-all fashion. HORDESAT’s successor MALLOB-
SAT (Schreiber and Sanders 2024) showed that careful
clause sharing can be a main driver of scalability for dis-
tributed SAT even if all solver threads are initally identical,
challenging the prevalent “portfolio” notion of such systems.

The MALLOB System. MALLOB is a distributed platform
for scheduling and processing SAT instances (Schreiber and
Sanders 2024) that also supports large-scale incremental
SAT solving (Schreiber 2025). According to the Interna-
tional SAT Competition 2020–2024, MALLOB’s integrated
SAT solving engine MALLOBSAT represents the state of the
art in distributed SAT solving. MALLOB’s defining feature
in terms of job scheduling is malleability, i.e., the addition
or removal of computational resources from a job during its
execution (Sanders and Schreiber 2022).

MALLOB runs m processes, each mapped to a fixed num-
ber c of cores. As such, p = m · c cores are available. Pro-
cesses communicate via the standard Message Passing Inter-
face (MPI). MALLOB takes jobs from interfaces established
at a subset of processes. An arriving job j first receives one
initial process, following a decentralized protocol. This pro-
cess, denoted the root of j, represents j in terms of exter-
nal communication throughout the life time of j. Subsequent
processes for j are allocated as follows: Whenever the sys-
tem state changes, a fair number of processes vj ∈ N+ is
calculated for each active job j. The vj are based on user-
defined job priorities as well as each job’s maximum demand
of resources, which it can adjust dynamically. The assign-
ment of jobs to processes is then updated to enforce that
each job j has exactly vj processes.1 Each job j is organized
as a complete binary tree Tj of processes, rooted at the root
of j. At a re-scheduling, Tj expands or shrinks to feature
exactly vj nodes. A distributed protocol assigns each vacant
position in a tree to an idle process. MALLOB’s SAT engine
MALLOBSAT uses Tj as a communication structure to pe-
riodically aggregate, filter, and broadcast the most valuable
distinct produced clauses (Schreiber and Sanders 2024).

If a MALLOB job is incremental, its associated resources
(input data and solver objects) are preserved after a SAT
solving call for subsequent calls (Schreiber 2025). Likewise,
MALLOBSAT’s solver threads then use incremental SAT
solving. This incrementality is crucial for performance when
performing a sequence of mostly lightweight “queries” on
a formula that may itself be large; distributing the full for-
mula and initializing new solvers for each query can be pro-
hibitively expensive (Schreiber 2025). Once an increment is
solved, the job reduces its resource demand to a minimum
and, consequently, its job tree shrinks to a single process.
Once the next increment arrives, the job increases its de-
mand again, causing its job tree to re-grow and, where pos-
sible, to re-adopt its former processes.

Distributed Solution Improving Search
We now describe our distributed MaxSAT solving approach.

Architecture
Fig. 1 illustrates the architecture of our approach. On an ab-
stract level, we run a fixed number x ≥ 1 of searchers in
an interleaved manner. Each searcher performs SIS as de-
scribed in Alg. 1 in some subset Bi of possible costs of
solutions; NextBound returns different bounds for each
searcher, as we will detail later. The best known upper and
lower bound, ub and lb, as well as the best known solution
αbest are shared across all searchers. Our procedure termi-
nates once lb = ub.

On a technical level, each searcher submits and interacts
with one incremental SAT job within the MALLOB platform.
This job is represented by a fixed process (the job’s root pro-
cess) and additionally features a fluctuating set of distributed
processes. MALLOB’s scheduling ensures that at any point

1A process runs at most one job at a time. When a process leaves
a job due to a re-scheduling, it may still keep the job’s associated
resources in order to possibly reuse them after a later re-scheduling.
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Figure 1: Overview on our approach’s architecture.
A MaxSAT task orchestrates a number of searchers, each
of which runs an incremental SAT solving job in MALLOB.

in time, all available computational resources (except for
the root processes of currently inactive jobs) are fairly dis-
tributed across all currently active SAT solving jobs.

Clause Sharing
Clause learning is one of the central techniques in modern
CDCL SAT solvers. When invoked on a CNF formula F ,
a SAT solver will, during its search, learn so-called conflict
clauses that are implied by F , i.e., satisfied by all solutions
of F . Such clauses are added to the solver’s clause database
to prevent it from later reexploring the same parts of the
search space. In distributed SAT solving, conflict clauses
are also shared between threads to prevent different threads
from exploring the same areas of the search space. Typically,
the correctness of sharing a clause C between solver threads
follows from all threads operating on the same input formula
and only learning clauses that are entailed by—or, more pre-
cisely, that have Reverse Unit Propagation (Goldberg and
Novikov 2003) w.r.t.—the clauses in their database.

In our distributed MaxSAT setup, establishing the correct-
ness of clause sharing requires more care. Searchers S1 and
S2 solving an instance (F,O) are operating on different for-
mulas F 1

W = F ∪ CNF(O,B1) and F 2
W = F ∪ CNF(O,B2),

where B1 and B2 are the respective sets of cost values
searched over. As such, S1 can learn a clause C that may not
be entailed by F 2

W as it may contain variables not present
in S2. Our finding is that C can still be shared with S2 as
long as all searchers operate on some subset of a common
base formula F ∪CNF(O,B), where B contains any bounds
that we might consider. In our setting, we obtain a global
upper bound ub, set B = {0, . . . , ub}, and pre-allocate all
variables in the formula CNF(O,B) in every searcher be-
fore encoding sub-formulas CNF(O,B1) ⊆ CNF(O,B) and
CNF(O,B2) ⊆ CNF(O,B). Any clause C entailed by F 1

W
will now be satisfiability- and cost-preserving for F 2

W ; for
any solution α of F 2

W that does not satisfy C, there is a so-
lution α′ of F 2

W ∪ {C} of equal cost. We provide a proof in
our Appendix.2 Intuitively, C is entailed by F ∪ CNF(O,B)
and any solution of F ∪ CNF(O,B) restricted onto the vari-
ables of F 2

W ∪ {C} is also a solution of F 2
W ∪ {C} of equal

cost. This argument also shows that C is cost-propagation
redundant for F 2

W (Ihalainen, Berg, and Järvisalo 2022).

2Available online: https://doi.org/10.5281/zenodo.15463748

Clause sharing in practice. Our SAT solving tasks within
MALLOB perform distributed clause sharing on two dis-
tinct levels. The first level is MALLOBSAT’s existing clause
sharing across the processes of a single job (Schreiber and
Sanders 2024), which we denote as intra-task clause shar-
ing (ITCS). The second level is cross-task clause sharing
(XTCS), which we introduce as a new feature to MALLOB.
We achieve XTCS by (i) defining groups of jobs among
which XTCS should be performed, (ii) periodically collect-
ing the addresses of all active root processes that belong
to a common group, and (iii) using MALLOBSAT’s clause
sharing protocol on these addresses. More precisely, once a
root process obtains clauses from ITCS, it contributes these
clauses to the next XTCS operation. The clauses resulting
from an XTCS operation, in turn, are broadcast to all (cur-
rent) processes of all jobs involved in the XTCS.

MALLOBSAT’s secondary clause selection metric after
clause length, Literal Block Distance (Audemard and Si-
mon 2009), has in fact no discernible merit for parallel
clause sharing (Schreiber and Sanders 2024; Iida, Sonobe,
and Inaba 2024). Moreover, the LBD of a clause found in
a searcher S1 is unlikely to be meaningful to a different
searcher S2. To still carry some meaning with each shared
clause’s LBD, we overwrite it with a custom heuristic at the
XTCS level: We first assume the lowest possible (i.e., best)
LBD value and then increment it for each auxiliary variable
(i.e., variable not in F ) in the clause. This prioritizes clauses
that concern the problem’s intrinsic logic rather than PB con-
straints, which may be irrelevant to other searchers.

Interval Search
In the following, we propose a strategy for assigning
bounds to searchers during the MaxSAT solving procedure
(NextBound in Alg. 1). This strategy generalizes an earlier
search space splitting approach (Terra-Neves, Lynce, and
Manquinho 2016), as we discuss in more detail later.

During our search, we maintain a sequence of intervals
I = ⟨ [lb, ub1], [ub1 + 1, ub2], . . . , [ubk−1 + 1, ubk] ⟩. The
i-th interval Ii = [ubi−1 + 1, ubi] represents an active SAT
call of a searcher with bound ubi, and I as a whole repre-
sents the range of admissible bounds which may still need
to be tested before an optimal solution is identified. Initially,
I = ∅. The first searcher to test a bound is assigned the
initial range [0, ub − 1], which is inserted to I as a first in-
terval. Subsequent queries for a bound to test are handled as
follows: The rightmost interval Ii = [l, r] ∈ I that max-
imizes r − l is identified and split into two equally sized
halves. The left interval’s upper bound, ⌊ l+r

2 ⌋, is then used
as the next bound to test. Once a SAT call with bound ubi
returns, we distinguish three cases (Fig. 2):

1. If the SAT call reports satisfiability with found cost ub′i ≤
ubi, all intervals Ij with ubj ≥ ub′i are removed and their
corresponding SAT calls are interrupted. If the leftmost
removed interval [l, r] satisfies l < ub′i, a truncated in-
terval I ′ = [l, ub′i − 1] is appended to I. Since I ′ does
not (yet) represent any active SAT call, a special case ap-
plies: The next searcher to query a bound is immediately
assigned I ′ without first splitting it.

https://doi.org/10.5281/zenodo.15463748
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Figure 2: Illustration of progress in interval search, via
an improved solution (left), unsatisfiability (center), and a
searcher being cancelled (right). Black bars denote active
SAT calls; colors / shades delineate the different intervals.

2. If the SAT call reports unsatisfiability, all intervals Ij
with ubj ≤ ubi are removed and their corresponding
SAT calls are interrupted.

3. If the SAT call stopped because its searcher was removed
(see “Focusing the search” later), the corresponding in-
terval Ii is merged with interval Ii+1 to the right. (The
“rightmost” searcher is never removed.)

As a slight refinement, note that a SAT call may find a
solution of cost ub′ < ub, thus improving upon the best
known upper bound, even if the bound enforced was larger
than ub. Therefore, we introduce a leniency parameter ε =
0.01. Upon an upper bound update ub′, we cancel a removed
interval’s SAT call only if its bound exceeds (1 + ε) · ub′.

Our interval search has the following properties: If only
a single searcher is used, its search behavior is equivalent
to standard SIS (Alg. 1). With two searchers, the resulting
search behavior corresponds to SIS interleaved with bisec-
tion over the admissible range of bounds. With 2n searchers
(n ∈ N), the range of bounds to test is first split uniformly
and then subdivided dynamically based on the further pro-
gression. A searcher withdraws from the procedure once no
bound is left for it to test, which applies in particular if the
overall range of I is smaller than the number of remaining
searchers and, therefore, no interval can be split any further.
Example 3. Let (F,O) be a MaxSAT instance with known
upper bound ub = 32. A first searcher S1 is assigned
range [0, 31] and thus searches for α(O) ≤ 31. After as-
signing bounds to two further searchers S2 and S3, we
have I = ⟨[0, 15](S2), [16, 23](S3), [24, 31](S1)⟩. Searcher
S3 finds a solution with cost 20. This interrupts S1, removes
the two rightmost intervals and leaves a truncated interval
[16, 19]. After assigning new bounds to S3 and S1, we have
I = ⟨[0, 7](S1), [8, 15](S2), [16, 19](S3)⟩. Searcher S2 now
reports unsatisfiability; S1 is interrupted, the two leftmost
intervals are removed, and assigning new bounds to S2 and
S1 yields I = ⟨[16, 17](S2), [18, 18](S1), [19, 19](S3)⟩.
Skewed splitting. In SIS-based MaxSAT (Bacchus,
Järvisalo, and Martins 2021), SAT calls resulting in unsat-
isfiability are often more expensive than SAT calls resulting
in satisfiability. As such, we want to focus mainly on im-
proving the best-known solution rather than incrementally
updating the lower bound.

Our basic idea is to split intervals in I not in two equally
sized halves but in a skewed manner, e.g., 75% vs. 25%.
Integrating this change naı̈vely into interval search would
result in the leftmost interval being the largest interval, and

thus being the subject of splitting, for many iterations. In-
stead, we also need to refine the choice of which interval
to split. To this end, we relate each interval Ii to a mass mi,
which is some arbitrary positive constant for the initial inter-
val. If interval Ii is split, its arising sub-intervals both receive
a mass of mi/2, regardless of the skew applied during split-
ting. To identify an interval for splitting, we now select the
rightmost interval of maximum mass rather than maximum
size. This results in the same splitting decisions as with our
original strategy while applying some skew 0 < σ < 1 to
every split. A remaining issue is which mass to attribute to
a truncated interval I ′, which may cover any left-side sub-
range of its original parent interval. For any skew σ, note that
the leftmost interval resulting from n splits receives 0.5n of
the original mass and σn of the original size. Generalizing
this notion, if an interval I ′ covers a share α of its parent
interval’s range, we attribute a share σlog0.5(α) of its parent’s
mass. σ = 0.5 results in the original interval search.

Example 4. If we use σ = 0.75 in Example 3, starting all
searchers yields I = ⟨[0, 23](S2), [24, 29](S3), [30, 31](S1)⟩
with mass ratios 2:1:1. A 4th searcher would receive [0, 17].

Focusing the search. Early experiments indicated that
tests at relatively low bounds can get stuck in their (UN)SAT
call for an extended period while the upper bound converges
to its optimum relatively quickly. Eventually, all active SAT
calls test unsatisfiable bounds, and only one of them is rele-
vant for progress. The resources spent by the remaining calls
could instead be used to accelerate the final crucial call.

The simple measure we propose in this work is to reduce
the number of active searchers as the procedure begins to
stagnate. Whenever a certain amount of time t has passed
without any searcher making progress (i.e., receiving a re-
sult from a SAT call), the searcher at the lowest bound is
removed from the procedure and its SAT task is interrupted
and cleaned up. At least one searcher is always kept alive.

Example 5. Following Example 3, time t passes without any
progress. S2 is removed and its interval [16, 17] is merged,
leading to I = ⟨[16, 18](S1), [19, 19](S3)⟩. The freed re-
sources are redistributed to the remaining two searchers.

Pseudo Boolean Encodings
The specific PB-encoding used for realizing CNF(O,Bi) is
known to significantly affect the performance of SIS (Eén
and Sörensson 2006; Paxian, Reimer, and Becker 2018). We
pragmatically focus on three different PB encodings that are
also used by PACOSE, the current state-of-the-art sequential
SIS-based solver (Paxian, Reimer, and Becker 2018), and
aim to balance between the number of clauses in CNF(O,B)
and the SAT solving performance in terms of propagation,
i.e., how efficiently a solver can detect that the cost of a par-
tial assignment exceeds the enforced bound. We consider the
following three encodings:

(i) The (Warners) Adder (Warners 1998; Eén and
Sörensson 2006) achieves a compact encoding (linear in the
number of terms) by summing up the objective coefficients
as binary numbers and restricting the individual bits of the
sum. It results in the least amount of unit propagation.



(ii) The Generalized Totalizer (GTE) (Bailleux and
Boufkhad 2003; Joshi, Martins, and Manquinho 2015)
builds a binary tree in which the literal-coefficient pairs
of the objective to be encoded form the leaves. Informally
speaking, the internal nodes correspond to variables that
count the sum of coefficients of the literals in different sub-
sets of leaves. The outputs of the GTE are the variables as-
sociated with the root. The GTE propagates the best but re-
quires a worst-case exponential number of clauses.

(iii) The Dynamic Polynomial Watchdog (DPW) (Pax-
ian, Reimer, and Becker 2018) can be considered to strike a
middle ground in terms of size and performance. It achieves
a compact but well propagating encoding by using totalizers
to sum up the individual bits of the different coefficients of
the objective as a unary number, and then merging them.

Inspired by PACOSE (Paxian, Reimer, and Becker 2018),
we heuristically pick an encoding based on O. We use a
Warners adder if O is very large (|O| > 10 000 or

∑
i wi >

1012), GTE if O is small (|O| ≤ 5 or (
∑

i wi ≤ 100 with at
most 20 unique weights)), and DPW otherwise. In addition,
we added some memory-saving measures to prefer DPW
over GTE (Adder over DPW) in case of large F (> 107

literals) whenever the more involved encoding is expected
to be large (|O| > 25 for GTE, |O| > 5000 for DPW). The
values were chosen based on PACOSE’s decision heuristic,
informed guesses, and preliminary tests to gauge memory
requirements; a more thorough exploration of the parameter
space may yield further improvements in future works.

Preprocessing
MaxSAT solvers commonly preprocess the input to reduce
its size and/or complexity. The premier MaxSAT prepro-
cessing solution is the standalone tool MAXPRE (Korhonen
et al. 2017; Ihalainen, Berg, and Järvisalo 2022), which im-
plements SAT-based simplifications (e.g., Bounded Variable
Elimination) as well as MaxSAT-specific techniques such as
subsumed label elimination and clause hardening.

In the spirit of devising a prototypical and yet power-
ful distributed MaxSAT solver, we integrated MaxPRE as
follows: We first run MaxPRE with the minimum features
needed to transform the input file into the objective-based
form expected by our approach. Solving then commences on
the resulting instance. Concurrently, we run MaxPRE’s full-
featured preprocessing, interrupting it every few seconds
to assess the improvements made thus far. If the instance
or objective function was reduced significantly (≤ 90% of
the original number of total literals, variables, or objective
terms), we restart the entire solving procedure while retain-
ing the best bounds and best solution found so far. Improved
bounds are always applied directly. Our extension of Max-
PRE memorizes the performed transformations for each pre-
processing iteration separately and can thus transform a so-
lution to the problem at any preprocessing level into a solu-
tion to the original input problem. In general, the cost of a
non-optimal solution to a preprocessed problem can deviate
from the true cost of the according reconstructed solution
to the original problem (Leivo, Berg, and Järvisalo 2020);
as such, whenever our system is stopped before finding the

optimal solution, it recomputes the cost of the best found
reconstructed solution based on the original problem input.

Relation to Previous Work
We briefly set our approach in relation with prior work in the
field of parallel MaxSAT. We refer to Lynce, Manquinho,
and Martins (2018) for a more thorough literature review.

A two-thread MaxSAT algorithm was presented by Mar-
tins, Manquinho, and Lynce (2011b) and extended to sup-
port eight threads by Martins, Manquinho, and Lynce
(2011a, 2012). The shared-memory approach runs solution-
improving and core-guided algorithms on different threads.
The papers also provide an alternative condition for safe
clause sharing that requires analyzing the clause learning
procedure to determine what types of clauses are used in
the derivation of the learned clauses. Loosely speaking, only
clauses that are derived from hard clauses can be shared. By
contrast, our condition for sharing clauses can be checked
without alterations to the clause learning procedure. More-
over, our approach is the first with hierarchical parallelism
(running SAT calls in parallel while also parallelizing each
SAT call) and featuring clause sharing at all levels.

The only other distributed MaxSAT solver we know is
presented by Terra-Neves, Lynce, and Manquinho (2016).
Their search space splitting approach at k searchers subdi-
vides the range of admissible bounds a priori into k uniform
intervals. Our approach can be considered a generalized and
modernized version of this approach, introducing skewed
and focused search, parallel solving within each SAT call,
and information exchange across searchers. Terra-Neves et
al.’s approaches are not massively parallel (having been run
on ≤ 32 threads) and do not support weighted objectives.

Parallelizing core-guided approaches is a challenge out-
side the scope of this paper. Modern core-guided solvers
apply different reformulations that change the objective,
which complicates meaningful information exchange across
core-guided threads (Morgado, Dodaro, and Marques-Silva
2014). Earlier papers parallelize core-guided search by forc-
ing every core-guided thread to perform the exact same re-
formulation steps (Martins, Manquinho, and Lynce 2011a)
or parallelize the minimization of the found cores (Berg et al.
2024). Moreover, lower bounds found by SIS threads can-
not be used directly by core-guided threads because the SIS
thread cannot provide a “witness” core for the lower bound.

Experimental Evaluation
We now turn to the experimental evaluation of our approach.
Our software and data are available online (see footnote 2).

Implementation
We implemented our approach, which we refer to as MAL-
LOBMAX, in C++ within the MALLOB framework. An en-
tering MaxSAT task is launched as a local sub-program di-
rectly at the process where the task was introduced. As such,
the MaxSAT task can use the job submission interface it ar-
rived over to submit sub-jobs itself (SAT jobs in our case).
Compared to MALLOB’s prior, prototypical setup for incre-
mental solving (Schreiber 2025), we have invested signifi-
cant engineering effort to increase the practical performance



of incremental SAT tasks in MALLOB, including reworked
inter-process communication, caching of formula data, and
reducing and compressing the data to be communicated.

We implemented XTCS by reusing MALLOBSAT’s clause
sharing code, which lets us profit from non-trivial clause
sharing features such as buffering, merging, and filtering of
clauses (Schreiber and Sanders 2024). We limit the XTCS
sharing volume to 2× the ITCS sharing volume, which we
expect to suffice for exchanging the most helpful clauses
without overcrowding solver threads too much.

In terms of PB-encodings, we use OpenWBO’s Warn-
ers Adder (Martins, Manquinho, and Lynce 2014) and
RustSAT’s (Jabs 2025) incremental GTE and DPW en-
coders. The latter two exploit the Cone of Influence tech-
nique (Paxian, Reimer, and Becker 2018), which allows
to encode constraints just-in-time for each bound. We en-
hanced GTE and DPW to support pre-allocating auxiliary
variables and adjusted the Adder encoder, which encodes
all of CNF(O, {0, . . . , ub}) at once, to support individual
bound tests via assumptions only, i.e., without adding fur-
ther clauses that would cause inconsistencies across the
searchers’ formulas (see Appendix – footnote 2).

Setup
We use the HPC cluster SuperMUC-NG, where each com-
pute node features a two-socket Intel Skylake Xeon Plat-
inum 8174 clocked at 2.7 GHz with 2 × 24 = 48 physical
cores (96 hardware threads). Nodes have 96 GiB of RAM
each and communicate via Intel OmniPath. We run MAL-
LOBMAX on 1–16 nodes, i.e., 48–768 cores, with two pro-
cesses per socket and hence 12 cores per process.

Experiments in distributed environments are resource-
intensive and costly. The distributed SAT solving commu-
nity has introduced measures to make responsible use of
computational resources, which we follow in our experi-
ments. In particular, we limit each parallel run to 300 s wall-
clock time per instance, which is low in terms of sequential
optimal MaxSAT literature but in line with the limits used in
distributed SAT literature (Schreiber and Sanders 2024) and
MaxSAT anytime solving (Berg et al. 2024). An underlying
motivation is that the added cost of (massively) parallel runs
should be traded off not only by more solved instances but
also by much lower running times (Balyo, Sanders, and Sinz
2015). We also deliberately focus on a compact set of di-
verse and meaningful benchmarks—namely, 500 instances
(226 unweighted, 274 weighted) randomly drawn from all
1902 instances of the MaxSAT Evaluation’s 2023–2024 ex-
act tracks (Berg et al. 2024). We configure MALLOBSAT to
use the CADICAL SAT solver (Biere et al. 2024).

Rather than re-running small-scale parallel approaches
with dated solver backends, we consider sequential solvers
from MaxSAT Evaluation (MSE) 2024 (Berg et al. 2024)
as more competitive baselines. We run PACOSE (Paxian,
Reimer, and Becker 2018), the best available SIS MaxSAT
solver; UWR-SCIP-MAXPRE (Piotrów 2020), which in
2024 performed the best on both weighted and unweighted
instances at the low running times we are considering; and
SPB-MaxSAT-c-Band (Zheng et al. 2024), the winning sys-
tem of the MSE 2024 anytime tracks. To compute speedups,

exact anytime

Configuration # PAR MSE TM
m1/4 k1 290 263.5 .871 .838

m1 k1 299 252.4 .854 .832
m1 k2 301 251.2 .873 .846
m1 k4 301 253.4 .878 .850

m4 k1 315 235.1 .869 .846
m4 k2 315 235.8 .883 .859
m4 k2 no focus 311 238.9 .883 .859
m4 k2 σ0.75 316 234.5 .883 .856
m4 k4 315 237.5 .892 .867
m4 k4 no focus 313 238.5 .890 .864
m4 k4 σ0.75 314 237.3 .888 .860
m4 k4 no preprocessing 284 271.6 .879 .855
m4 k4 prior preprocessing 30 s 314 241.7 .896 .848
m4 k4 no XTCS 312 240.6 .889 .862

m16 k1 319 230.6 .878 .856
m16 k2 324 225.0 .898 .874
m16 k4 321 228.5 .908 .882
m16 k16 319 229.9 .910 .885

Pacose (MSE’24 exact) 279 284.6 .831 .800
UWr (MSE’24 exact) 328 222.9 .752 .717
SPB (MSE’24 anytime) 91 496.5 .932 .904

Table 1: Performance in terms of optimally solved instances
(#), corresponding Penalized Average Runtime (each time-
out counts as 2 · 300 s), MSE score (avg. ratio between op-
timal and best found cost at 300 s), and Time-aware MSE
score (like MSE, but accounting for all improvements over
time). m (k) denotes the number of nodes (searchers).

we run the sequential PACOSE for up to 6 h 20 min per input.
To assess anytime solving performance, we consider two

metrics. First, the MSE metric attributes a score of opt+1
c+1 to

each instance, where opt is the best known solution and c is
the approach’s best found solution after 300 s. Secondly, we
generalize this metric into the Time-aware MSE (TM) metric
to account for all x improvements an approach found over
time. We apply the MSE score for each improved solution
of cost ci reported after time ti (1 ≤ i ≤ x) and weigh it by
the time span ti+1 − ti for which it was the best found cost
(using tx+1 := 300 s for the final solution). The TM score is
the sum of these scores, normalized to [0, 1].

Results
We now discuss experimental results, as shown in Table 1.

Preprocessing via MaxPRE is highly beneficial to per-
formance, with a preprocessing-free run performing the
worst out of all tested MALLOBMAX configurations. Full a-
priori preprocessing with a 30 s budget results in very high
quality solutions and thus high MSE scores; however, TM
scores reveal the high upfront cost to arrive at these solu-
tions. Our incremental preprocessing allows to combine low
overhead for easy instances with powerful simplifications
for hard instances, thus performing the most convincingly.
Employing XTCS at four searchers resulted in an overall
16.3% geometric mean speedup. Notably, we found that
XTCS improves mean performance across all PB-encodings



(15/17/11 % speedup for Adder–/DPW–/GTE-encoded in-
stances), which indicates that sharing clauses across threads
with deviating working formulas is beneficial. The num-
ber of searchers employed makes a modest difference in
terms of optimal solving performance. Since the costly un-
satisfiability calls required for optimality profit from more
resources per searcher, the single-searcher configurations of
MALLOBMAX generally perform competitively. That being
said, at 16 nodes, two or more searchers clearly outperform a
single searcher. Running several searchers also benefits any-
time performance; e.g., at 16 nodes, MALLOBMAX reaches
an MSE score of 0.878 with one searcher and 0.908 with
four searchers. This shows how parallel bound search can
quickly yield good solutions without compromising on exact
solving performance. Disabling search focusing (t=20 s)
resulted in worse performance in terms of PAR-2 scores and
solved instances, both with two and four searchers. Adding
a skew to interval search (σ = 0.75) also resulted in better
PAR-2 scores, however only by an insignificant margin.

Next, we assess the scaling and competitiveness of
MALLOBMAX. We run two searchers with search focusing,
XTCS, and no skew at 12, 48, 192, and 768 cores (= 1/4,
1, 4, 16 nodes). Fig. 3 (left) shows results in terms of opti-
mal solving performance. MALLOBMAX drastically outper-
forms PACOSE already at 12 cores and continues to improve
up to 16 nodes. At 16 nodes, MALLOBMAX performs simi-
larly to UWR and even solves more instances at moderately
low running times (≤ 100 s) and more unweighted instances
(see Appendix – footnote 2). We deem these results very
encouraging, considering that UWR is a highly tuned core-
guided approach whereas pure SIS does not reflect the state
of the art in (sequential) MaxSAT solving (Berg et al. 2024).
We also show some Virtual Best Solvers (VBS), where the
fastest approach is selected for each instance. A VBS of
UWR and MALLOBMAX clearly outperforms a VBS of
UWR and PACOSE, and MALLOBMAX’s scaling from 1 to
16 nodes translates to a strong improvement of the respec-
tive VBS with UWR, showing that our approach provides a
significant complement to UWR’s performance.

Let us now consider anytime performance. SPB performs
Stochastic Local Search (SLS) with no regard for optimality
and achieves a higher MSE score than MALLOBMAX. The
tested PACOSE and UWR configurations are unable to reach
the anytime performance of MALLOBMAX. All in all, our
approach appears to strike a good balance between optimal
and anytime performance. Adding SLS techniques to our ap-
proach is likely to further boost its anytime performance –
for instance, a VBS of SPB and 16-node 4-searcher MAL-
LOBMAX leads to an MSE (TM) score of 0.971 (0.948).

Given a MaxSAT instance solved by PACOSE and by
MALLOBMAX at some scale, we can compute the speedup
by dividing PACOSE’s running time by MALLOBMAX’s.
Given a set of instances, a conservative means of aggregat-
ing speedups (Schreiber and Sanders 2024) is the geometric
mean, which, with two searchers, is 1.73 at 48 cores, 2.14
at 192 cores, and 2.52 at 768 cores. This metric can be mis-
leading since most instances are solved within few seconds,
where parallelization is rarely worthwhile. We can also as-
sess how speedups develop if we increase the difficulty of
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Figure 3: Left: Performance of exact MaxSAT approaches.
Right: Weak scaling of MALLOBMAX: Given a lower bound
τ on the running time Tseq of PACOSE, the y-coordinate de-
notes MALLOBMAX’s geometric mean speedup over the in-
stances where PACOSE took ≥ τ seconds.

instances, as measured via PACOSE’s running time. Inspired
by MALLOBSAT’s evaluation (Schreiber and Sanders 2024),
Fig. 3 (right) shows this weak scaling when fixing the num-
ber of searchers to two (continuous lines) and when fixing
the searchers per node to one (dotted lines). Across all con-
figurations, speedups improve as the difficulty of instances
increases, and adding searchers and/or nodes likewise im-
proves the scaling. For example, if we consider instances
where PACOSE took at least τ =500 s, MALLOBMAX with
one searcher per node reaches speedups of 19.2 (28.9, 33.6)
at 48 (192, 768) cores. As a rough point of reference, MAL-
LOBSAT previously achieved speedups of around 32 at 768
cores for pure SAT solving (Schreiber and Sanders 2024).

Conclusion
This paper introduces the first massively parallel approach to
general (i.e., weighted partial) MaxSAT solving. Our archi-
tecture exploits the distributed SAT solving platform MAL-
LOB and thus uses a flexible combination of task parallelism
and parallel incremental SAT solving to search and itera-
tively restrict the space of admissible objective costs. Exper-
iments on up to 768 cores confirm that our parallelization is
effective and considerably outscales existing SIS solvers.

While the results obtained mark a notable step towards
scalable MaxSAT solving, they also indicate clear direc-
tions going forward. In particular, we intend to combine
SIS-based parallelization with SLS methods and with ad-
vanced lower bounding techniques, e.g., based on unsatisfi-
able cores, to further improve performance and scalability.
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