
Lilotane: A Lifted SAT-based Approach
To Hierarchical Planning
Dominik Schreiber • dominik.schreiber@kit.edu

Institute of Theoretical Informatics, Karlsruhe Institute of Technology • Germany
Presentation of JAIR Article [1] at IJCAI 2021

TOHTN Planning

Totally Ordered Hierarchical Task
Network (TOHTN) Planning:
•Task: Parametrized signature of
something that must be achieved,
e.g., reach(car, destination).
Can be primitive or compound.
•Operator: Achieves a primitive
task. Alters the current world state:
Has preconditions and effects.
•Method: Achieves a compound
task by replacing it with totally
ordered subtasks. Has preconditions.
• Input: Initial state sI (collection
of facts), initial tasks T
•Objective: Successively achieve all
tasks at hand until only primitive
tasks are left and form a plan (an
executable sequence of actions)
•Central decisions: Which method
with which arguments to pick for
each compound task?

SAT-based HTN [2, 3]

1. Ground parametrized operators
and methods into “flat” actions
and reductions

2. Encode problem hierarchy up to
layer (depth) l in propositional logic

3.Perform SAT solving on formula
4.While unsatisfiable: l++, goto 2.
5. Decode plan from satisfying
assignment
Grounding can be a problem!

•Consider method deliver(r, t, x, Y )
where place Y is determined by a
parent task and resource r, truck t,
place x have 20 possible values each
⇒ 8 000 reductions!
•Blowup in input size, bottleneck
w.r.t. time and memory

Objectives
•Skip grounding: Instantiate
problem hierarchy as little as
possible, only when needed
•Avoid blowup: Find a more
compact logical representation
than fully instantiating all free
arguments

Minimalistic Example

RF0
RF1

T1 T2

F2
R

A B C

Factories F0, F1 produce resource R;
Trucks T1, T2 can transport resources;
Factory F2 must be built using R.

goto(T1, B,C,C)

do construct(F2, C)P0,0

P1,0

get(R,F1, B,C)

get(R,F0, A,C)

constr noop(F0, A)

constr noop(F1, B)

do produce(R,F0, A)

do produce(R,F1, B)

deliver(R, T1, A,C)

P2,0

P1,1

P2,1 P2,3P2,2

produce(R,F0, A)

produce(R,F1, B)

goto noop(T1, A)
goto noop(T2, B)
goto(T1, A,B,B)
goto(T2, B,A,A)

pickup(T1,R,A)
pickup(T1,R,B)
pickup(T2,R,A)
pickup(T2,R,B)

drop(T1,R,C)

drop(T2,R,C)

produce(R,F0, A)

produce(R,F1, B) . . .

ε() pickup(T1,R,A)
pickup(T1,R,B)
pickup(T2,R,A)
pickup(T2,R,B)

move(T1,A,B)

move(T2,B,C)

. . .

goto noop(T2, C)

drop(T1,R,C)

drop(T2,R,C)

. . .

P3,0 P3,1 P3,2 P3,3 P3,4 P3,5 P3,6

P4,0 P4,1 P4,2 P4,4 P4,5 P4,6 P4,7 P4,8

goto(T1, A,B,C)
goto(T2, B,C,C)
goto(T2, A,B,C)

constr(F2, R, C)

constr(F2, R, C)

constr(F2, R, C)

constr(F2, R, C)

ε()

ε()

deliver(R, T2, A,C)
deliver(R, T1, B,C)
deliver(R, T2, B,C)

. . .

. . .

ε()

P4,3

Layers L0, . . . , L4 and positions Pl,x which contain possible operations, i.e.,
actions (rectangular) and reductions (rounded); a solution is highlighted.

Central Idea: Lifted Encoding

Consider method deliver(r, t, x, Y ): Instead of many new ground operations,
introduce pseudo-constants ρ, τ, ξ and only instantiate and encode a single
operation o = deliver(ρ, τ, ξ, Y ). Encode operation o relative to pseudo-
constants: Boolean variable for o, for each possible pseudo-constant substitu-
tion, and for each precondition/effect with pseudo-constants. Add clauses to
logically enforce preconditions/effects relative to the active substitutions.

Experiments

10−1 100 101 102

Runtime of Lilotane / s

10−1

100

101

102

R
u

n
ti

m
e

of
T

re
e-

R
E

X
/

s

y=x

4 timeouts of Tree-REX

2 timeouts of Lilotane

103 104 105 106 107 108

Clauses encoded by Lilotane

103

104

105

106

107

108

C
la

u
se

s
en

co
d

ed
b
y

T
re

e-
R

E
X

y=x

Barman

Gripper

Blocksworld

Hiking

Childsnack

Rover

Depots

Satellite

Elevator

Transport

Entertainment

Zenotravel

0.0 0.2 0.4 0.6 0.8 1.0

Share of total runtime of successful runs

Lilotane (IPC)

Lilotane (old)

Tree-REX (old)

totSAT (old) Parsing

Preprocessing

Instantiation

Encoding

File I/O

SAT solving

Misc.

Lilotane: Features
•Lazy instantiation layer by
layer until success
•Reachability analysis at each
layer prunes invalid operations
•Lifted encoding: Decisions on
method arguments are deferred to
SAT solving
•Encoding exponential along fewer
dimensions than Tree-REX [3]
•Designed around Incremental

SAT solving – also allows for
anytime plan improvement

Discussion

•Performs better, produces much
smaller formulae than previous
SAT-based TOHTN planners
(Tree-REX [3], PANDA-totSAT [2])
•Shifts majority of effort to SAT
solver, reduces memory footprint
•Few domains where merits of
grounding appear to outweigh its
problems (e.g. Entertainment)
•Competitive in state-of-the-art
TOHTN planning: Runner-up in
Total Order track of IPC 2020
•Produces plans of high quality
even without plan improvement;
often finds optimal plans when
using plan improvement
•Lifted instantiation and encoding
techniques may be applicable for
related planning approaches, e.g.,
general HTN planning

References

[1] Dominik Schreiber.
Lilotane: A lifted SAT-based approach to
hierarchical planning.
Journal of Artificial Intelligence
Research, 70:1117–1181, 2021.

[2] Gregor Behnke, D. Höller, and S. Biundo.
totSAT – totally-ordered hierarchical
planning through SAT.
In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32,
pages 6110–6118, 2018.

[3] Dominik Schreiber, Damien Pellier,
Humbert Fiorino, et al.
Tree-REX: SAT-based tree exploration for
efficient and high-quality HTN planning.
In 29th ICAPS, pages 382–390, 2019.


