aW S Carnegie
\ Mellon’
University

_UNIVERSITY OF MINNESOTA Karlsruhe Institute of Technology

Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers

TACAS 2023
Dawn Michaelson, Dominik Schreiber, Marijn J.H. Heule, Benjamin Kiesl-Reiter, Michael W. Whalen | April 24, 2023

KIT — The Research University in the Helmholtz Association WWW.kit.ed u

https://www.kit.edu

SKIT

Motivation: SAT Solving

SAT Problem

Given CNF formula F := A ¢ (V,ZEC Z), find satisfying variable assignment or report unsatisfiability.

2/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Motivation: SAT Solving

SAT Problem
Given CNF formula F := A ¢ (Vmc Z), find satisfying variable assignment or report unsatisfiability.

SAT solvers: Crucial building block for wide range of applications

2/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Motivation: SAT Solving and Trust

How can we trust the result of a SAT solver?

3/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Motivation: SAT Solving and Trust

How can we trust the result of a SAT solver?

sat.

f z—1Ly—0,2—0,...
CNF| —>

3/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Motivation: SAT Solving and Trust

How can we trust the result of a SAT solver?

Sjt',> z—1Ly—0,2—0,...
CNF| —»
L@
Checker

3/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: Distributed SAT Solving ﬂ(IT

Karlsruhe Institute of Technology

350

SAT Competition 2022 Main Track

300

250

M —4— [1600x] Mallob-KiCaLiGlu

-0~ [64x] Parkissat-rs
% [1x] Kissat_MAB-HyWalk

200

150

100

50

solved instances (total: 400)

0 200 400 600 800 1000
Time limit per instance [s]

4/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: Distributed SAT Solving ﬂ(IT

Karlsruhe Institute of Technology

SAT Competition 2022 Main Track

350

300

250

M —A— [1600x] Mallob-KiCaLiGlu

-0~ [64x] Parkissat-rs
% [1x] Kissat_MAB-HyWalk

200

150

100

50

solved instances (total: 400)

0 200 400 600 800 1000
Time limit per instance [s]

4/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: Distributed SAT Solving ﬂ(IT

Karlsruhe Institute of Technology

SAT Competition 2022 Main Track

350

+56% solve%
300 Ew@@@e@
250

32x speedup

200 M —&— [1600x] Mallob-KiCaLiGlu

-0~ [64x] Parkissat-rs
150 =¥ [1x] Kissat-MAB-HyWalk

100

50

solved instances (total: 400)

0 200 400 600 800 1000
Time limit per instance [s]

4/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: Distributed SAT Solving ﬂ(IT

Karlsruhe Institute of Technology

SAT Competition 2022 Main Track

350
300 +56 é‘;ﬁ?é‘ég%
250 No unsatisfiability proofs!

32x speedup

200 M —&— [1600x] Mallob-KiCaLiGlu

--0-- [64x] Parkissat-rs
150 =¥ [1x] Kissat-MAB-HyWalk

100

50

solved instances (total: 400)

0 200 400 600 800 1000
Time limit per instance [s]

5/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

UNSAT Proofs for Distributed Solvers ﬂIT

@ Real, practical issue
® Some competition results of cloud solvers proved to be incorrect later!
@ Growing scale of computation = Growing probability of failures

@ Prior approaches unsatisfactory

® Limited to single machine
® Not scalable at all

Introduce scalable production of unsatisfiability proofs for distributed clause-sharing SAT solvers,
allowing to fully trust their results and exploit their power for critical applications.

6/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Background: Distributed Clause-Sharing SAT Solving

Process#1 ... Process#2 ...
Sl SQ 55 56
53 S4 S7 SS

Portfolio of different CDCL solver configurations
~ producers of conflict clauses

718 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

KIT

Background: Distributed Clause-Sharing SAT Solving
Process#l ... Process#2 ...
51 SQ 55 56

S3

Clause sharing

718 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Background: Distributed Clause-Sharing SAT Solving

Process #1 Process #2

718 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format? A“(IT

Karlsruhe Institute of Technology

DRAT proof format

add x3
add X1 Xo
add X1
delete X3
add X3Xq
add xqx3
add O

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Which Proof Format?

DRAT proof format

add x3
add X1 Xo
add X1
delete X3
add X3Xq
add xqx3
add O

+ compact format
+ prevalent in solvers
- costly checking

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Which Proof Format?
DRAT proof format LRAT proof format

add x3 add ¢g := X3 via 5,04

add X1 Xo add Ci0 = X1 X2 via C3,Co

add X7 add c¢y1 := X7 via ¢s,C9

delete X3 delete ¢y

add x3Xs add ¢y := X3X4 via ¢7,C11

add xqx3 add c¢y3 := xyX3 via cg,Ci2

add O add Ci4 \= O via C11,C10,C1

+ compact format
+ prevalent in solvers
- costly checking

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3
add X1 Xo
add X1
delete X3
add X3Xq
add xqx3
add O

+ compact format
+ prevalent in solvers
- costly checking

LRAT proof format

add ¢y 1= X3 via C5,Cs

add ¢y := xy X2 via c3,C
add c¢y1 := X7 via ¢s,C9
delete ¢y

add ¢yo := X3X; via ¢7,Cq1
add c¢y3 := xyX3 via cg,Ci2
add ¢4 := [via ¢41,C10,C4

+ more efficient checking
+ unique IDs for clauses
+ explicit dependencies!

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3
add X1 Xo
add X1
delete X3
add X3Xq
add xqx3
add O

+ compact format
+ prevalent in solvers
- costly checking

8/18 2023-04-24

LRAT proof format

KIT

Karlsruhe Institute of Technology

Unique LRAT IDs across solvers?

add ¢y 1= X3 via C5,Cs

add ¢y := xy X2 via c3,C
add c¢y1 := X7 via ¢s,C9
delete ¢y

add ¢yo := X3X; via ¢7,Cq1
add c¢y3 := xyX3 via cg,Ci2
add ¢4 := [via ¢41,C10,C4

+ more efficient checking
+ unique IDs for clauses
+ explicit dependencies!

Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT | Algorithm Engineering

Which Proof Format? A“(IT

Karlsruhe Institute of Technology

DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?

add x3 add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co :
add X1 add ¢4 1= X7 via Cs,Co : Sy S
delete X3 delete ¢ :
add x3Xs add ¢y := X3X4 via ¢7,C11
add xqx3 add c¢y3 := xyX3 via cg,Ci2 :
add O add Ci4 \= O via C11,C10,C1 53 S4

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3
add X1 Xo
add X1
delete X3
add X3Xq
add xqx3
add O

+ compact format
+ prevalent in solvers
- costly checking

8/18 2023-04-24

LRAT proof format

add ¢g := X3 via 5,04

add ¢y := Xy X2 via ¢3,C
add c¢y1 := X7 via ¢s,C9
delete ¢y

add ¢yo := X3X; via ¢7,Cq1
add c¢y3 := xyX3 via cg,Ci2
add Ci4 := O via C11,C10,C4

+ more efficient checking
+ unique IDs for clauses
+ explicit dependencies!

Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT

Karlsruhe Institute of Technology

Unique LRAT IDs across solvers?

S3 S4

10 original clauses

KIT | Algorithm Engineering

KIT

Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?

add x; add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co :
add xy add cyy := Xy via Cs,Cy : Sy S
delete X3 delete ¢y : ‘1/5 19 1216 20
add x3X; add c¢p = X3Xs Via ¢7,Ci g
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1 53 S4

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?
add x3 add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co
add X; add ci1 1= X; via Gs,Co S S
delete x3 delete co © 117519 1216 20
add x3X; add c¢p = X3Xs Via ¢7,Ci g
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1 53 S4
13‘1/7 21

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Which Proof Format?
DRAT proof format LRAT proof format
o o Unique LRAT IDs across solvers?
add x; add Co :=X3 Vi@ Cs5,Ca
add X1 Xo add Ci0 = X1 X2 via C3,Co
add x; add ¢y = X; via Cs,Co S S
delete X3 delete ¢y : ‘1/5 19 1216 20
add x3X; add c¢p = X3Xs Via ¢7,Ci g
add xqx3 add c¢y3 := xyX3 via cg,Ci2
add O add Ci4 \= O via C11,C10,C1 53 ‘54
1317 21 1418 22

+ compact format + more efficient checking

+ prevalent in solvers + unique IDs for clauses 10 original clauses

- costly checking + explicit dependencies!

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination
@ Read all partial proofs simultaneously
@ Qutput line < all dependencies d output

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

A Sequential Approach A“(IT

Karlsruhe Institute of Technology

1. Combination

@ Read all partial proofs simultaneously B
@ Qutput line < all dependencies d output

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination
@ Read all partial proofs simultaneously
@ Qutput line < all dependencies d output

KIT

Karlsruhe Institute of Technology

V_
Uil
|

|

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach A“(IT

Karlsruhe Institute of Technology

1. Combination
@ Read all partial proofs simultaneously EI> — —
@ Qutput line < all dependencies d output

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Karlsruhe Institute of Technology

A Sequential Approach A“(IT

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

v_
- 111
|
|
I

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Karlsruhe Institute of Technology

A Sequential Approach A“(IT

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

v_
R T
|
|
I

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Karlsruhe Institute of Technology

A Sequential Approach A“(IT

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

v_
I 1171
|
|
|

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach
id =137 D = {131,108, 106}
1. Combinaton TTrTTornTrnT oo Ao
@ Read all partial proofs simultaneously EI>—— — — —

@ Qutput line < all dependencies d output _ — f—

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously :135 A

@ Qutput line < all dependencies d output _ — f—

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination
@ Read all partial proofs simultaneously
@ Qutput line < all dependencies d output

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen:

KIT

Karlsruhe Institute of Technology

Distributed UNSAT Proofs

KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

v_
- 111
|
|
|

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination
@ Read all partial proofs simultaneously
@ Qutput line < all dependencies d output

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT

Karlsruhe Institute of Technology

I i

KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination
@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

@ Qutput line < all dependencies d output

CTTTHIMT

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously — D_— — —
@ Qutput line < all dependencies d output — - —
2. Pruning
® Required clauses R := {id(0O)}
@ Read combined proof from back to front _—
E T
2 |

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= QOutput addition of ¢

=

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

7
I
il

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= QOutput addition of ¢

T

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= QOutput addition of ¢

I
8

A\\y/A
A\

Tl

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:
Output deletion of d, add dto R
= QOutput addition of ¢ D

|V

Tl

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:
Output deletion of d, add dto R
= QOutput addition of ¢ D

V.

Tl

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

7
I
il

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= QOutput addition of ¢ b

XX

|

\Y

fl

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R D
= QOutput addition of ¢

XX

|

\Y

fl

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add d to R »
= QOutput addition of ¢

g
XX

i

]

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R: D

Output deletion of d, add dto R
= QOutput addition of ¢

XX

|

il
6

]|

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R: D

Output deletion of d, add dto R
=- Output addition of ¢

XX

|

6

T

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R? 5
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
=- Output addition of ¢

XX

|

\Y

6

1l

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
=- Output addition of ¢

A\
V”
g
XX

6

L

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

7
I
il

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
=- Output addition of ¢

6

]

T { 77
-

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

7
I
il

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
=- Output addition of ¢

g
XX

6

]

TR { 17

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

7
I
il

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
=- Output addition of ¢

g
XX

6

]

Ty { 77

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

A Sequential Approach

1. Combination

@ Read all partial proofs simultaneously

I
7
I
i

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
=- Output addition of ¢

g
XX

6

T
]

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach e e ey

1. Combination

@ Read all partial proofs simultaneously

i
7l
I
il

@ Qutput line < all dependencies d output

2. Pruning
® Required clauses R := {id((J)}
@ Read combined proof from back to front
® @ Clause c: id(c) € R?
= For each dependency d of ¢, d ¢ R:

Output deletion of d, add dto R
= QOutput addition of ¢

3. Reverse lines of pruned proof

g
XX

i
&
e

T
]

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Karlsruhe Institute of Technology

Distributed Pruning: Schematic Overview

Epoch 0

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Pruning: Schematic Overview

>Q

/

Epoch 0 Sharing Epoch 1

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Pruning: Schematic Overview

Epoch 0 Sharing Epoch 1 Sharing Epoch 2

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Pruning: Schematic Overview

o

°

°

°

() First “prune”,
e then combine!
°

°

°

°

°

°

°

°

°

s UO

Epoch 0 Sharing Epoch 1 Sharing Epoch 2

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Pruning: Schematic Overview
() O O First “prune”,
® then combine!
o O O 2100 =0
() O O Trace dependencies
o O O epoch by epoch
° O
® =
Epoch 0 Sharing Epoch 1 Sharing Epoch 2

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Pruning: Schematic Overview
o () 0 = @
[® b \\) L First “prune”,
o then combine!
e O OO0 -0 |
o O w R Trace dependencies
[O ;O O P Y epoch by epoch
J ;\" , Redistribute remote IDs
o O at epoch borders
. O L \ ;
o \=

Epoch 0 Sharing Epoch 1 Sharing Epoch 2

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Pruning: Schematic Overview
\ / \\\Q O rIjirst “prut:e”,'
oo G T e
e
s hiciig

Epoch 0 Sharing Epoch 1 Sharing Epoch 2

Trace dependencies
O & epoch by epoch

Redistribute remote IDs
at epoch borders

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Karlsruhe Institute of Technology

Distributed Pruning: Real Data A“(IT
— Derived clause IDs —

S
Ss
S;

S4

Solving: Align clause IDs at each sharing epoch

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Karlsruhe Institute of Technology

Distributed Pruning: Real Data A“(IT
— Derived clause IDs —

S
Ss
S;

S4

Solving: Align clause IDs at each sharing epoch

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Karlsruhe Institute of Technology

Distributed Pruning: Real Data A“(IT
— Derived clause IDs —

5
Ss
33 |

S4

Solving: Align clause IDs at each sharing epoch

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Karlsruhe Institute of Technology

Distributed Pruning: Real Data A“(IT
— Derived clause IDs —

S
Ss
S;

S4

Solving: Align clause IDs at each sharing epoch

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Karlsruhe Institute of Technology

Distributed Pruning: Real Data ﬂ(IT
— Derived clause IDs —

S
Ss
S;

S4

Solving: Align clause IDs at each sharing epoch

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Karlsruhe Institute of Technology

Distributed Pruning: Real Data ﬂ(IT
— Derived clause IDs —

S
Ss
S;

S4

Solving: Align clause IDs at each sharing epoch

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

180—variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epoch

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

180—variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epoch

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

a 180—variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

180—variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S;

Ss

a 180—variabl.e random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S3

Ss

180-variable random 3-SAT formula. 4 notebook cores x 1.7s. 300k dendencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;

S

S3

Ss

180-variable random 3-SAT formula. 4 notebook cores x 1.7's. 300k dpndencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

S;
S;

S;

Ss

180-variable randm 3-SAT formula. 4 notebook cores x 1.7's. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data IT

— Derived clause IDs —

S
S
S3

S4 P

o 5
180-variable random 3-SAT formula. 4 notebook cores x 1.7s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Ui

Distributed Pruning: Real Data

— Derived clause IDs —

Sy

Sz

Ss

Ss

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of origin

1118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Combination

@ Hierarchically merge pruning output
along tree of processors

@ Root processor
adds approximated “delete” lines
writes stream into file
reverses file

l Buffered
communication

1218 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

OO

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

]

Solving g] Proof assembly Pr:

]

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

]

Solving g] Proof assembly Pr:

]

Postprocessing

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCaL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

]

Solving g] Proof assembly Pr:

]

Postprocessing

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Experimental Setup (2/2)

Comparison to prior work
® Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’'14

® Synchronized, moderated logging into shared DRAT proof
® Solver not competitive = Simulate proof output, compare checking times only

@ Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022

14/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Experimental Setup (2/2)

Comparison to prior work
® Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’'14

® Synchronized, moderated logging into shared DRAT proof
® Solver not competitive = Simulate proof output, compare checking times only

@ Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022

Resources
® 1600x setup: 100x m6i.4xlarge EC2 instances (16 hwthreads, 64 GB RAM)
® 64 x setup: 1x m6i.1l6xlarge EC2 instance (64 hwthreads, 256 GB RAM)
@ Sequential setup: One m6i.4xlarge EC2 instance

< 1000 s solving
< 4000 s proof prod.

14/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Evaluation: Solving Times
350
P
300
000 @000 il

" -0
U1 250 1
c
§ 200 T 4 [1600%] baseline (Mallob-KiCaLiGlu)
] : -0 [64x] baseline (Parkissat-rs)
8 150 -7 [1x] baseline (Kissat_MAB-HyWalk)
c
7
£ 100
=

50

0 T T T T T
0 200 400 600 800 1000

Solving time ¢ [s]

1518 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

SKIT

Evaluation: Solving Times
350
oA AR R
300 P L3
U1 250
= " 4 [1600%] baseline (Mallob-KiCaLiGlu)
v
E 200 - T -+~ [1600x] ours without LRAT logging
3 - -0+ [64x] baseline (Parkissat-rs)
8 150 --o-= [64x] ours without LRAT logging
c
3 <% [1x] baseline (Kissat-MAB-HyWalk)
£ 100
BiS
50
0 T T T T T
0 200 400 600 800 1000

Solving time ¢ [s]

1518 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Evaluation: Solving Times

15/18

2023-04-24

350
300
a 250
200

150

instances solved in

SKIT

Karlsruhe Institute of Technology

4 [1600x] baseline (Mallob-KiCaLiGlu)
-+~ [1600x] ours without LRAT logging
—=— [1600x] ours

0-+ [64x] baseline (Parkissat-rs)

--o-= [64x] ours without LRAT logging
—e— [64x] ours

<% [1x] baseline (Kissat-MAB-HyWalk)

T T T T
0 200 400 600 800 1000
Solving time ¢ [s]

Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT | Algorithm Engineering

Evaluation: Proof Output A“(IT

Karlsruhe Institute of Technology

How large are the resulting proofs?

(139) (139) (135) (154)

(@]
80 A
o (@]
3 60 - o ©O
8 8
] a
5
e
a
,,,,,,,, I
p1600
16/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT | Algorithm Engineering

Karlsruhe Institute of Technology

Evaluation: Proof Output A“(IT

How large are the resulting proofs? How fast can we check the proofs?
(139) (139) (135) (154) (99) (81*) (139) (135) (154*
o 40
80 - o
Q
R o g 30 4
& 601 o © g
g 8 % 18
‘0 =) w 20
5 40 1 o 8
o =
E o
20 - S 10 g S
NI BT e ! iTiiH
HMP64 564 p1600 Kissat HMP64 564 P64 P16OO

16/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Evaluation: Overhead

Proof assembly

139%) (135) (154*

1019 o

o}
8_

o (e] g
6_

Multiple of solving time

1718 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Evaluation: Overhead
Proof assembly Postprocessing
139%) (135) (154 (139) (135) (154*

1019 o

[} o [}

£ 81 8 £

= (0] (o] 5

2 8 2

3 61 >

3 8

s s

s 4 s

3 3

1718 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Evaluation: Overhead
Proof assembly Postprocessing Total (HMP: checking only)
139%) (135) (154 (139) (135) (154* 5o (817) (139) (135) (154*
1019 o
o o 0 o 404
£ 81 8 £ £
= (0] (o] 5 b=
2 8 2 2
3 61 > > 307
2 a a o
s ks s o
o 4 @ @ 201
£ ¢ E E 0
TH-
f 5 u g L
P1600

H’\/;P64 SI64 P64 Pl‘ﬁOO

1718 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

.
Conclusion

® First feasible approach to have distributed clause-sharing solvers produce UNSAT proofs
a Significantly outperform existing proof-producing solvers

Future work
® Reduce overhead — improve LRAT support in SAT backends!
@ Proof production in Mallob’s scheduled mode?

18/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach

Parallel processing + distributed memory?

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

® Trace dependencies of “[1" by scanning all partial proofs
in reverse chronological order

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

® Trace dependencies of “[1" by scanning all partial proofs
in reverse chronological order

@ Redistribute remote required clause IDs to their origin

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

KIT

Distributed Approach

_ Producedclauses ____

Parallel processing + distributed memory? So ’100|104|108112J 116 120|124J 128|- - -
@ Trace dependencies of “C]” by scanning all partial proofs - ‘
. . 101(105|| [109(](113]- - -
in reverse chronological order S ..
® Redistribute remote required clause IDs to their origin So ’102|106|110‘ ’114118‘
® Exploit structure of clause sharing to unroll dependencies Ss ’103|107‘ ’111|115|119‘ L
Epoch 0 | Epoch 1 Epoch 2

Sharing Sharing

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach

_ Producedclauses ____

Parallel processing + distributed memory? So ’100|104|108112J 116 120|124J 128|- - -
. H) ” H 1 1
Trace dependencies of “IJ” by scanning all partial proofs S 109 o

in reverse chronological order

® Redistribute remote required clause IDs to their origin S 110 \EﬂS 122 -

® Exploit structure of clause sharing to unroll dependencies Ss ’103|107‘ ’111|115|119‘

Epoch 0 | Epoch 1 Epoch 2
Sharing Sharing

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach

_ Producedclauses ____

Parallel processing + distributed memory? So ’100|104|108112J 116 120|124J 128|- - -
@ Trace dependencies of “C]” by scanning all partial proofs - ‘
. . 101(105|| [109(](113]- - -
in reverse chronological order S .. -
@ Redistribute remote required clause IDs to their origin So |102|106|110| |114118|
® Exploit structure of clause sharing to unroll dependencies Ss ’103|107‘ ’111|115|119‘ L
Epoch 0 | Epoch 1 Epoch 2

Sharing Sharing

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach

_ Producedclauses ____

Parallel processing + distributed memory? So |100|104|108112J 116 120|124J 128|- - -
@ Trace dependencies of “C]” by scanning all partial proofs - ‘
. . 101(105| | [109(](113]- - -
in reverse chronological order S .. l:
@ Redistribute remote required clause IDs to their origin So |102|106|1£[| |114118| e
® Exploit structure of clause sharing to unroll dependencies S, |103|107| ’111|115|119‘ .
Epoch 0 | Epoch 1 Epoch 2

Sharing Sharing

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach

_ Producedclauses ____

Parallel processing + distributed memory? So |100|104|108112J 116 120|124J 128|- - -
@ Trace dependencies of “C]” by scanning all partial proofs - ‘
. . 101(105| | [109(](113]- - - ?
in reverse chronological order S1 .. - /1 18
u Redistribute remote required clause IDs to their origin S |102|106|110| 4118

@ Exploit structure of clause sharing to unroll dependencies S, |103|107| ’111|115|119‘

Epoch 0 | Epoch 1 Epoch 2
Sharing Sharing

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach A“(IT

Karlsruhe Institute of Technology

__ Producedclauses

Parallel processing + distributed memory? So ’100|104|108|112‘ ’116|120|124‘ 128| - -
® Trace dependencies of “[1" by scanning all partial proofs -

. . 101105 117 129|---
in reverse chronological order S ..

® Redistribute remote required clause IDs to their origin So ’102|106|110‘ ’118|122‘ 130|- -

® Exploit structure of clause sharing to unroll dependencies S, 127 131]- - -

a Al . _
Align clause IDs to find out when to redistribute them Epoch 0 Epoch 1 Epoch 2

Sharing Sharing

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach A“(IT

_ Producedclauses ____

Parallel processing + distributed memory? So ’100|104|108|1 12‘ ’1 16|120|124‘
® Trace dependencies of “[J” by scanning all partial proofs - 122
. . 101|105 117
in reverse chronological order S ..
® Redistribute remote required clause IDs to their origin So ’102|106|110‘ ’118|122‘

® Exploit structure of clause sharing to unroll dependencies Ss 127

a Al . _
Align clause IDs to find out when to redistribute them Epoch 0 Epoch 1 Epoch 2

Sharing Sharing

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach

Parallel processing + distributed memory?

@ Prune all partial proofs in parallel, then combine
— read each partial proof only once!

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach
Parallel processing + distributed memory? __ Produced clauses >
@ Prune all partial proofs in parallel, then combine S ’100|104|108 1 12J 116 120|124J 128]- - -
— read each partial proof only once!

S1 109]
Sy ’102|106|110‘ ’114118‘
Sy [103[107] | [111]115]119]

Epoch 0 | Epoch 1 Epoch 2
Sharing Sharing

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach
Parallel processing + distributed memory? __ Produced clauses >
@ Prune all partial proofs in parallel, then combine S ’100|104|108 1 12J 116 120|124J 128]- - -
— read each partial proof only once!

S1 109]
So EHS 122]- -
Sy [103[107] | [111]115]119]

Epoch 0 | Epoch 1 Epoch 2
Sharing Sharing

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach
Parallel processing + distributed memory? __ Produced clauses >
@ Prune all partial proofs in parallel, then combine S ’100|104|108 1 12J 116 120|124J 128]- - -
— read each partial proof only once!

S1 109]
S, [102]108110] | [114]119]
Sy [103[107] | [111]115]119]

Epoch 0 | Epoch 1 Epoch 2
Sharing Sharing

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach
Parallel processing + distributed memory? __ Produced clauses >
@ Prune all partial proofs in parallel, then combine S |100|104|108 1 12J 116 120|124J 128]- - -
— read each partial proof only once!

31 109)
S, |102|106|1£[| l114]11]
Sy [103]107] | [111]115]119]

Epoch 0 | Epoch 1 Epoch 2
Sharing Sharing

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach
Parallel processing + distributed memory? __ Produced clauses >
@ Prune all partial proofs in parallel, then combine S |100|104|108 1 12J 116 120|124J 128]- - -
— read each partial proof only once! ‘

@ Unroll needed dependencies epoch by epoch S 109 \E ...
in reverse chronological order s, |102|106|1£[| |114118| N
Sy [108[107] | [111]115[119] | [123] - -

Epoch 0 | Epoch 1 Epoch 2
Sharing Sharing

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach
Parallel processing + distributed memory? __ Produced clauses >
@ Prune all partial proofs in parallel, then combine S |100|104|108 1 12J 116 120|124J 128]- - -
— read each partial proof only once! ‘

® Unroll needed dependencies epoch by epoch Sh 109 @ o
in reverse chronological order S, |102|106|1£[| |114118| e

@ Redistribute each required clause to its producer

— redistribute each ID only once! Ss |103|107| ’111|115|119‘ e
— just before processing its originating epoch! Epoch 0 | Epoch 1 Epoch 2

Sharing Sharing

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Approach
Parallel processing + distributed memory? __ Produced clauses >
@ Prune all partial proofs in parallel, then combine S |100|104|108 1 12J 116 120|124J 128]- - -
— read each partial proof only once!
® Unroll needed dependencies epoch by epoch S 109 \E e 1187
in reverse chronological order So |102|106|110| 4/118 /
@ Redistribute each required clause to its producer
— redistribute each ID only once! S3 |103|107| ’111|115|119‘
— just before processing its originating epoch! Epoch 0 | Epoch 1 Epoch 2

Sharing Sharing

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach A“(IT

Karlsruhe Institute of Technology

Parallel processing + distributed memory? __ Producedclauses _

@ Prune all partial proofs in parallel, then combine
— read each partial proof only once!

® Unroll needed dependencies epoch by epoch Sy 117 129|- -
in re.ver.se chronologlcaTl order . So ’102|106|110‘ ’118|122‘ 130|- -~
@ Redistribute each required clause to its producer

— redistribute each ID only once! Ss 127 131)- -

— just before processing its originating epoch!

S [100104]108[112] | |116]120[124 || 128] - -

Epoch 0 Epoch 1 Epoch 2
& Align clause IDs to efficiently find epoch of a clause Sharing Sharing
20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach A“(IT

Karlsruhe Institute of Technology

Parallel processing + distributed memory? __ Producedclauses _

@ Prune all partial proofs in parallel, then combine
— read each partial proof only once!

® Unroll needed dependencies epoch by epoch Si 117
in re.ver.se chronologlcaTl order . So ’102|106|110‘ ’118|122‘
@ Redistribute each required clause to its producer

— redistribute each ID only once! Ss 127

— just before processing its originating epoch! Epoch 0 Epoch 1 Epoch 2
& Align clause IDs to efficiently find epoch of a clause Sharing Sharing

S ’100|104|108|112‘ ’116|120|124‘

122

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Details

@ Transfer each remote required clause ID once!
— Defer redistribution until epoch of origin
— Detect duplicates while aggregating clause IDs

2118 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

KIT

Distributed Pruning: Details

__ Producedclauses ____
So ’100|104|108112J 116120|124J 128]- - -

@ Transfer each remote required clause ID once!

— Defer redistribution until epoch of origin S 109 e
— Detect duplicates while aggregating clause IDs
S, [102[108]110] | [114[118] | [122] -
@ How to find epoch of origin of a remote clause ID?
Sy [103[107] [[111]115[119] | [123] - -
Epoch 0 | Epoch 1 Epoch 2

Sharing Sharing

21/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Distributed Pruning: Details

__ Producedclauses

a Transfer each remote required clause ID once! So ’100|104|108|112‘ ’116|120|124‘ 128

— Defer redistribution until epoch of origin S 117 129|---

— Detect duplicates while aggregating clause IDs

Sy 1o2toef11o] {18122 |[130] -

@ How to find epoch of origin of a remote clause ID?
— Align clause IDs at epoch borders during solving S3 127 131) -
Epoch 0 Epoch 1 Epoch 2

Sharing Sharing

21/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Rewind: Realization

Local Processing
® For each S;: Frontier F; of req. clause IDs produced by S;;
Backlog B; of remote req. clause IDs
a External-memory priority queues partitioned by epoch
® Epoch e: Process proof parts from ep. e
® Clause c with id(c) € Fi: Insert each d € deps(c) into F; or B;

22/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

Rewind: Realization

Local Processing

® For each S;: Frontier F; of req. clause IDs produced by S;;
Backlog B; of remote req. clause IDs

a External-memory priority queues partitioned by epoch
® Epoch e: Process proof parts from ep. e
® Clause ¢ with id(c) € F;: Insert each d € deps(c) into F; or B;

Redistribution of Clause IDs
@ After processing epoch e: Extract IDs from ep. e — 1 from all B;
& All-reduction like Mallob’s clause sharing, detecting duplicate IDs
& Strictly less communication than during solving

22/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCalL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: l1rat-check from drat-trim tools (M. Heule)

23/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

KIT

Experimental Setup (1/2)
Technology

@ Base SAT solver: CaDiCalL modified to output LRAT, restricted portfolio

@ Distributed solver: Mallob extended by clause IDs + proof production

® Proof checking: l1rat-check from drat-trim tools (M. Heule)

Pipeline
El Parallel solving (— partial proofs)
Sequential or parallel proof assembly
Sequential postprocessing of assembled proof
B Sequential proof checking

23/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

