
Unsatisfiability Proofs for Distributed Clause-Sharing SAT Solvers

TACAS 2023

Dawn Michaelson, Dominik Schreiber, Marijn J.H. Heule, Benjamin Kiesl-Reiter, Michael W. Whalen | April 24, 2023

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

SAT Problem
Given CNF formula F :=

∧
c∈C

(∨
`∈c `

)
, find satisfying variable assignment or report unsatisfiability.

SAT solvers: Crucial building block for wide range of applications

2/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: SAT Solving

SAT Problem
Given CNF formula F :=

∧
c∈C

(∨
`∈c `

)
, find satisfying variable assignment or report unsatisfiability.

SAT solvers: Crucial building block for wide range of applications

2/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: SAT Solving

How can we trust the result of a SAT solver?

3/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: SAT Solving and Trust

How can we trust the result of a SAT solver?

SAT
solver

x 7→ 1, y 7→ 0, z 7→ 0, . . .

CNF
X

sat.

3/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: SAT Solving and Trust

How can we trust the result of a SAT solver?

SAT
solver

x 7→ 1, y 7→ 0, z 7→ 0, . . .

CNF

X

X

Checker

sat.

unsat.

3/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: SAT Solving and Trust

0 200 400 600 800 1000

Time limit per instance [s]

0

50

100

150

200

250

300

350
#

so
lv

ed
in

st
an

ce
s

(t
ot

al
:

40
0)

SAT Competition 2022 Main Track

[1600x] Mallob-KiCaLiGlu

[64x] Parkissat-rs

[1x] Kissat MAB-HyWalk

4/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: Distributed SAT Solving

0 200 400 600 800 1000

Time limit per instance [s]

0

50

100

150

200

250

300

350
#

so
lv

ed
in

st
an

ce
s

(t
ot

al
:

40
0)

SAT Competition 2022 Main Track

[1600x] Mallob-KiCaLiGlu

[64x] Parkissat-rs

[1x] Kissat MAB-HyWalk

32× speedup

4/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: Distributed SAT Solving

0 200 400 600 800 1000

Time limit per instance [s]

0

50

100

150

200

250

300

350
#

so
lv

ed
in

st
an

ce
s

(t
ot

al
:

40
0)

SAT Competition 2022 Main Track

[1600x] Mallob-KiCaLiGlu

[64x] Parkissat-rs

[1x] Kissat MAB-HyWalk

32× speedup

+56% solved

4/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: Distributed SAT Solving

0 200 400 600 800 1000

Time limit per instance [s]

0

50

100

150

200

250

300

350
#

so
lv

ed
in

st
an

ce
s

(t
ot

al
:

40
0)

SAT Competition 2022 Main Track

[1600x] Mallob-KiCaLiGlu

[64x] Parkissat-rs

[1x] Kissat MAB-HyWalk

32× speedup

+56% solved

No unsatisfiability proofs!

5/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: Distributed SAT Solving

Real, practical issue
Some competition results of cloud solvers proved to be incorrect later!
Growing scale of computation ⇒ Growing probability of failures

Prior approaches unsatisfactory
Limited to single machine
Not scalable at all

Objective
Introduce scalable production of unsatisfiability proofs for distributed clause-sharing SAT solvers,
allowing to fully trust their results and exploit their power for critical applications.

6/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

UNSAT Proofs for Distributed Solvers

Process #1 Process #2

S1 S2

S3 S4

S5 S6

S7 S8

Portfolio of different CDCL solver configurations
≈ producers of conflict clauses

7/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Background: Distributed Clause-Sharing SAT Solving

Process #1 Process #2

S1 S2

S3 S4

S5 S6

S7 S8

.Clause sharing

7/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Background: Distributed Clause-Sharing SAT Solving

Process #1 Process #2

S1 S2

S3 S4

S5 S6

S7 S8

7/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Background: Distributed Clause-Sharing SAT Solving

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add �Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := � via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add �Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := � via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add �Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := � via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add �Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := � via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add �Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := � via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add �Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := � via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

S1 S2

S4S3

10 original clauses

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add �Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := � via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

S1 S2

S4S3

10 original clauses

11 15 19
+4 +4

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add �Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := � via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

S1 S2

S4S3

10 original clauses

11 15 19 12 16 20
+4 +4

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add �Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := � via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

S1 S2

S4S3

10 original clauses

11 15 19 12

13

16

17

20

21

+4 +4

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add �Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := � via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?

S1 S2

S4S3

10 original clauses

11 15 19 12

13 14

16

17 18

20

21 22

+4 +4

8/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Which Proof Format?

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

id = 137 D = {131, 108, 106}

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

id = 137 D = {131, 108, 106}

110135 108

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

id = 137 D = {131, 108, 106}

110135 108

X
137

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof

9/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

A Sequential Approach

Epoch 0

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1 Epoch 2Sharing Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1 Epoch 2Sharing Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1 Epoch 2Sharing Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1 Epoch 2Sharing Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Schematic Overview

Epoch 0 Epoch 1 Epoch 2Sharing Sharing

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders

10/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Schematic Overview

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Rewind: Trace local required clause IDs, redistribute remote IDs just before reading their epoch of originGg

11/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Real Data

Hierarchically merge pruning output
along tree of processors

Root processor
1 adds approximated “delete” lines
2 writes stream into file
3 reverses file

communication
Buffered

12/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Combination

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
Preprocessing

f

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Experimental Setup (1/2)

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
Preprocessing

f

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Experimental Setup (1/2)

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
SolvingPreprocessing

f

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Experimental Setup (1/2)

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
SolvingPreprocessing Proof assembly PF ′

f

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Experimental Setup (1/2)

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
SolvingPreprocessing Proof assembly PostprocessingPF ′ PF

f

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Experimental Setup (1/2)

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
SolvingPreprocessing Proof assembly PostprocessingPF ′ PF Checking

f

13/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Experimental Setup (1/2)

Comparison to prior work
Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’14

Synchronized, moderated logging into shared DRAT proof
Solver not competitive⇒ Simulate proof output, compare checking times only

Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022

Resources

1600× setup: 100× m6i.4xlarge EC2 instances (16 hwthreads, 64 GB RAM)

64× setup: 1× m6i.16xlarge EC2 instance (64 hwthreads, 256 GB RAM)

Sequential setup: One m6i.4xlarge EC2 instance

≤ 1000 s solving
≤ 4000 s proof prod.

14/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Experimental Setup (2/2)

Comparison to prior work
Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’14

Synchronized, moderated logging into shared DRAT proof
Solver not competitive⇒ Simulate proof output, compare checking times only

Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022

Resources

1600× setup: 100× m6i.4xlarge EC2 instances (16 hwthreads, 64 GB RAM)

64× setup: 1× m6i.16xlarge EC2 instance (64 hwthreads, 256 GB RAM)

Sequential setup: One m6i.4xlarge EC2 instance

≤ 1000 s solving
≤ 4000 s proof prod.

14/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Experimental Setup (2/2)

0 200 400 600 800 1000

Solving time t [s]

0

50

100

150

200

250

300

350

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

[1600×] baseline (Mallob-KiCaLiGlu)

[64×] baseline (Parkissat-rs)

[1×] baseline (Kissat MAB-HyWalk)

15/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Evaluation: Solving Times

0 200 400 600 800 1000

Solving time t [s]

0

50

100

150

200

250

300

350

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

[1600×] baseline (Mallob-KiCaLiGlu)

[1600×] ours without LRAT logging

[64×] baseline (Parkissat-rs)

[64×] ours without LRAT logging

[1×] baseline (Kissat MAB-HyWalk)

15/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Evaluation: Solving Times

0 200 400 600 800 1000

Solving time t [s]

0

50

100

150

200

250

300

350

#
in

st
an

ce
s

so
lv

ed
in
≤

t
s

[1600×] baseline (Mallob-KiCaLiGlu)

[1600×] ours without LRAT logging

[1600×] ours

[64×] baseline (Parkissat-rs)

[64×] ours without LRAT logging

[64×] ours

[1×] baseline (Kissat MAB-HyWalk)

15/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Evaluation: Solving Times

How large are the resulting proofs?

HMP64 S64 P64 P1600

20

40

60

80

P
ro

of
si

ze
(G

B
)

(139) (139) (135) (154)

5

How fast can we check the proofs?

Kissat HMP64 S64 P64 P1600

10

20

30

40

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(99) (81∗) (139) (135) (154∗)

1

∗Some data cut off medianQ1Q1 - 1.5IQR Q3 Q3 + 1.5IQR outliers

16/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Evaluation: Proof Output

How large are the resulting proofs?

HMP64 S64 P64 P1600

20

40

60

80

P
ro

of
si

ze
(G

B
)

(139) (139) (135) (154)

5

How fast can we check the proofs?

Kissat HMP64 S64 P64 P1600

10

20

30

40

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(99) (81∗) (139) (135) (154∗)

1

∗Some data cut off medianQ1Q1 - 1.5IQR Q3 Q3 + 1.5IQR outliers

16/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Evaluation: Proof Output

Proof assembly

S64 P64 P1600

2

4

6

8

10

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139∗) (135) (154∗)

1

Postprocessing

S64 P64 P1600

2

4

6

8

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139) (135) (154∗)

1

GgTotal (HMP: checking only)

HMP64 S64 P64 P1600

10

20

30

40

50

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(81∗) (139) (135) (154∗)

1

∗Some data cut off medianQ1Q1 - 1.5IQR Q3 Q3 + 1.5IQR outliers

17/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Evaluation: Overhead

Proof assembly

S64 P64 P1600

2

4

6

8

10

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139∗) (135) (154∗)

1

Postprocessing

S64 P64 P1600

2

4

6

8

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139) (135) (154∗)

1

GgTotal (HMP: checking only)

HMP64 S64 P64 P1600

10

20

30

40

50

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(81∗) (139) (135) (154∗)

1

∗Some data cut off medianQ1Q1 - 1.5IQR Q3 Q3 + 1.5IQR outliers

17/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Evaluation: Overhead

Proof assembly

S64 P64 P1600

2

4

6

8

10

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139∗) (135) (154∗)

1

Postprocessing

S64 P64 P1600

2

4

6

8

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(139) (135) (154∗)

1

GgTotal (HMP: checking only)

HMP64 S64 P64 P1600

10

20

30

40

50

M
u

lt
ip

le
of

so
lv

in
g

ti
m

e

(81∗) (139) (135) (154∗)

1

∗Some data cut off medianQ1Q1 - 1.5IQR Q3 Q3 + 1.5IQR outliers

17/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Evaluation: Overhead

First feasible approach to have distributed clause-sharing solvers produce UNSAT proofs

Significantly outperform existing proof-producing solvers

Future work

Reduce overhead — improve LRAT support in SAT backends!

Proof production in Mallob’s scheduled mode?

18/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Conclusion

Parallel processing + distributed memory?

Trace dependencies of “�” by scanning all partial proofs
in reverse chronological order

Redistribute remote required clause IDs to their origin

Exploit structure of clause sharing to unroll dependencies

Align clause IDs to find out when to redistribute them

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Trace dependencies of “�” by scanning all partial proofs
in reverse chronological order

Redistribute remote required clause IDs to their origin

Exploit structure of clause sharing to unroll dependencies

Align clause IDs to find out when to redistribute them

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Trace dependencies of “�” by scanning all partial proofs
in reverse chronological order

Redistribute remote required clause IDs to their origin

Exploit structure of clause sharing to unroll dependencies

Align clause IDs to find out when to redistribute them

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Trace dependencies of “�” by scanning all partial proofs
in reverse chronological order

Redistribute remote required clause IDs to their origin

Exploit structure of clause sharing to unroll dependencies

Align clause IDs to find out when to redistribute them

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Trace dependencies of “�” by scanning all partial proofs
in reverse chronological order

Redistribute remote required clause IDs to their origin

Exploit structure of clause sharing to unroll dependencies

Align clause IDs to find out when to redistribute them

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Trace dependencies of “�” by scanning all partial proofs
in reverse chronological order

Redistribute remote required clause IDs to their origin

Exploit structure of clause sharing to unroll dependencies

Align clause IDs to find out when to redistribute them

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Trace dependencies of “�” by scanning all partial proofs
in reverse chronological order

Redistribute remote required clause IDs to their origin

Exploit structure of clause sharing to unroll dependencies

Align clause IDs to find out when to redistribute them

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Trace dependencies of “�” by scanning all partial proofs
in reverse chronological order

Redistribute remote required clause IDs to their origin

Exploit structure of clause sharing to unroll dependencies

Align clause IDs to find out when to redistribute them

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

118?

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Trace dependencies of “�” by scanning all partial proofs
in reverse chronological order

Redistribute remote required clause IDs to their origin

Exploit structure of clause sharing to unroll dependencies

Align clause IDs to find out when to redistribute them

S0

S1

S2

S3

100 104 108 112

101 105

102 106 110

103 107

Epoch 0 Epoch 1
Sharing

128

129

130

131

Epoch 2
Sharing

. . .

. . .

. . .

. . .

116 120 124

117

118 122

119 123 127

Produced clauses

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Trace dependencies of “�” by scanning all partial proofs
in reverse chronological order

Redistribute remote required clause IDs to their origin

Exploit structure of clause sharing to unroll dependencies

Align clause IDs to find out when to redistribute them

S0

S1

S2

S3

100 104 108 112

101 105

102 106 110

103 107

Epoch 0 Epoch 1
Sharing

128

129

130

131

Epoch 2
Sharing

. . .

. . .

. . .

. . .

116 120 124

117

118 122

119 123 127

Produced clauses

122

19/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Prune all partial proofs in parallel, then combine
— read each partial proof only once!

Unroll needed dependencies epoch by epoch
in reverse chronological order

Redistribute each required clause to its producer
— redistribute each ID only once!
— just before processing its originating epoch!

Align clause IDs to efficiently find epoch of a clause

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Prune all partial proofs in parallel, then combine
— read each partial proof only once!

Unroll needed dependencies epoch by epoch
in reverse chronological order

Redistribute each required clause to its producer
— redistribute each ID only once!
— just before processing its originating epoch!

Align clause IDs to efficiently find epoch of a clause

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Prune all partial proofs in parallel, then combine
— read each partial proof only once!

Unroll needed dependencies epoch by epoch
in reverse chronological order

Redistribute each required clause to its producer
— redistribute each ID only once!
— just before processing its originating epoch!

Align clause IDs to efficiently find epoch of a clause

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Prune all partial proofs in parallel, then combine
— read each partial proof only once!

Unroll needed dependencies epoch by epoch
in reverse chronological order

Redistribute each required clause to its producer
— redistribute each ID only once!
— just before processing its originating epoch!

Align clause IDs to efficiently find epoch of a clause

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Prune all partial proofs in parallel, then combine
— read each partial proof only once!

Unroll needed dependencies epoch by epoch
in reverse chronological order

Redistribute each required clause to its producer
— redistribute each ID only once!
— just before processing its originating epoch!

Align clause IDs to efficiently find epoch of a clause

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Prune all partial proofs in parallel, then combine
— read each partial proof only once!

Unroll needed dependencies epoch by epoch
in reverse chronological order

Redistribute each required clause to its producer
— redistribute each ID only once!
— just before processing its originating epoch!

Align clause IDs to efficiently find epoch of a clause

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Prune all partial proofs in parallel, then combine
— read each partial proof only once!

Unroll needed dependencies epoch by epoch
in reverse chronological order

Redistribute each required clause to its producer
— redistribute each ID only once!
— just before processing its originating epoch!

Align clause IDs to efficiently find epoch of a clause

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Prune all partial proofs in parallel, then combine
— read each partial proof only once!

Unroll needed dependencies epoch by epoch
in reverse chronological order

Redistribute each required clause to its producer
— redistribute each ID only once!
— just before processing its originating epoch!

Align clause IDs to efficiently find epoch of a clause

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

118?

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Prune all partial proofs in parallel, then combine
— read each partial proof only once!

Unroll needed dependencies epoch by epoch
in reverse chronological order

Redistribute each required clause to its producer
— redistribute each ID only once!
— just before processing its originating epoch!

Align clause IDs to efficiently find epoch of a clause

S0

S1

S2

S3

100 104 108 112

101 105

102 106 110

103 107

Epoch 0 Epoch 1
Sharing

128

129

130

131

Epoch 2
Sharing

. . .

. . .

. . .

. . .

116 120 124

117

118 122

119 123 127

Produced clauses

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Parallel processing + distributed memory?

Prune all partial proofs in parallel, then combine
— read each partial proof only once!

Unroll needed dependencies epoch by epoch
in reverse chronological order

Redistribute each required clause to its producer
— redistribute each ID only once!
— just before processing its originating epoch!

Align clause IDs to efficiently find epoch of a clause

S0

S1

S2

S3

100 104 108 112

101 105

102 106 110

103 107

Epoch 0 Epoch 1
Sharing

128

129

130

131

Epoch 2
Sharing

. . .

. . .

. . .

. . .

116 120 124

117

118 122

119 123 127

Produced clauses

122

20/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Approach

Transfer each remote required clause ID once!
— Defer redistribution until epoch of origin
— Detect duplicates while aggregating clause IDs

How to find epoch of origin of a remote clause ID?

— Align clause IDs at epoch borders during solving

21/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Details

Transfer each remote required clause ID once!
— Defer redistribution until epoch of origin
— Detect duplicates while aggregating clause IDs

How to find epoch of origin of a remote clause ID?

— Align clause IDs at epoch borders during solving

S0

S1

S2

S3

100 104 108 112

101 105

102 106

103 107

116

109

110

111

Epoch 0 Epoch 1
Sharing

. . .

. . .

. . .

120 124 128

113

114 122 . . .

Epoch 2

123

Sharing

Produced clauses

115 119

118

21/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Details

Transfer each remote required clause ID once!
— Defer redistribution until epoch of origin
— Detect duplicates while aggregating clause IDs

How to find epoch of origin of a remote clause ID?
— Align clause IDs at epoch borders during solving

S0

S1

S2

S3

100 104 108 112

101 105

102 106 110

103 107

Epoch 0 Epoch 1
Sharing

128

129

130

131

Epoch 2
Sharing

. . .

. . .

. . .

. . .

116 120 124

117

118 122

119 123 127

Produced clauses

21/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Distributed Pruning: Details

Local Processing

For each Si : Frontier Fi of req. clause IDs produced by Si ;
Backlog Bi of remote req. clause IDs

External-memory priority queues partitioned by epoch

Epoch e: Process proof parts from ep. e

Clause c with id(c) ∈ Fi : Insert each d ∈ deps(c) into Fi or Bi

Redistribution of Clause IDs

After processing epoch e: Extract IDs from ep. e − 1 from all Bi

All-reduction like Mallob’s clause sharing, detecting duplicate IDs

Strictly less communication than during solving

22/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Rewind: Realization

Local Processing

For each Si : Frontier Fi of req. clause IDs produced by Si ;
Backlog Bi of remote req. clause IDs

External-memory priority queues partitioned by epoch

Epoch e: Process proof parts from ep. e

Clause c with id(c) ∈ Fi : Insert each d ∈ deps(c) into Fi or Bi

Redistribution of Clause IDs

After processing epoch e: Extract IDs from ep. e − 1 from all Bi

All-reduction like Mallob’s clause sharing, detecting duplicate IDs

Strictly less communication than during solving

22/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Rewind: Realization

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

1 Parallel solving (→ partial proofs)

2 Sequential or parallel proof assembly

3 Sequential postprocessing of assembled proof

4 Sequential proof checking

23/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Experimental Setup (1/2)

Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

1 Parallel solving (→ partial proofs)

2 Sequential or parallel proof assembly

3 Sequential postprocessing of assembled proof

4 Sequential proof checking

23/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Experimental Setup (1/2)

