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SAT Problem
Given CNF formula F :=

∧
c∈C

(∨
`∈c `

)
, find satisfying variable assignment or report unsatisfiability.

SAT solvers: Crucial building block for wide range of applications
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How can we trust the result of a SAT solver?

3/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: SAT Solving and Trust



How can we trust the result of a SAT solver?

SAT
solver

x 7→ 1, y 7→ 0, z 7→ 0, . . .

CNF
X

sat.

3/18 2023-04-24 Michaelson, Schreiber, Heule, Kiesl-Reiter, Whalen: Distributed UNSAT Proofs KIT | Algorithm Engineering

Motivation: SAT Solving and Trust



How can we trust the result of a SAT solver?

SAT
solver

x 7→ 1, y 7→ 0, z 7→ 0, . . .

CNF

X

X

Checker

sat.

unsat.
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SAT Competition 2022 Main Track

[1600x] Mallob-KiCaLiGlu

[64x] Parkissat-rs

[1x] Kissat MAB-HyWalk

32× speedup

+56% solved

No unsatisfiability proofs!
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Real, practical issue
Some competition results of cloud solvers proved to be incorrect later!
Growing scale of computation ⇒ Growing probability of failures

Prior approaches unsatisfactory
Limited to single machine
Not scalable at all

Objective
Introduce scalable production of unsatisfiability proofs for distributed clause-sharing SAT solvers,
allowing to fully trust their results and exploit their power for critical applications.
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Process #1 Process #2

S1 S2

S3 S4

S5 S6

S7 S8

Portfolio of different CDCL solver configurations
≈ producers of conflict clauses
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Process #1 Process #2

S1 S2

S3 S4

S5 S6

S7 S8

. . . . . .Clause sharing
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Process #1 Process #2

S1 S2

S3 S4

S5 S6

S7 S8
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DRAT proof format

add x3Gg
add x1x2Gg
add x1Gg
delete x3Gg
add x3x4Gg
add x1x3Gg
add �Gg

+ compact format

+ prevalent in solvers

- costly checking

LRAT proof format

add c9 := x3 via c5,c4

add c10 := x1x2 via c3,c2

add c11 := x1 via c6,c9

delete c9

add c12 := x3x4 via c7,c11

add c13 := x1x3 via c8,c12

add c14 := � via c11,c10,c1

+ more efficient checking

+ unique IDs for clauses

+ explicit dependencies!

Unique LRAT IDs across solvers?
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1. Combination

Read all partial proofs simultaneously

Output line⇔ all dependencies d output

2. Pruning

Required clauses R := {id(�)}
Read combined proof from back to front

@ Clause c: id(c) ∈ R?
⇒ For each dependency d of c, d /∈ R:
⇒ Output deletion of d , add d to R
⇒ Output addition of c

3. Reverse lines of pruned proof
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Epoch 0

First “prune”,
then combine!

Trace dependencies
epoch by epoch

Redistribute remote IDs
at epoch borders
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— Derived clause IDs→

S1

S2

S3

S4

180-variable random 3-SAT formula. 4 notebook cores × 1.7 s. 300k dependencies (orig. clauses omitted).

Solving: Align clause IDs at each sharing epochGg
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Hierarchically merge pruning output
along tree of processors

Root processor
1 adds approximated “delete” lines
2 writes stream into file
3 reverses file

communication
Buffered
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Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

F

Ppre

F ′
Preprocessing

f
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Comparison to prior work
Shared-memory clause-sharing portfolios: Heule, Manthey, Philipp @ POS’14

Synchronized, moderated logging into shared DRAT proof
Solver not competitive⇒ Simulate proof output, compare checking times only

Sequential SAT solving: Kissat_MAB-HyWalk @ SAT Comp. 2022

Resources

1600× setup: 100× m6i.4xlarge EC2 instances (16 hwthreads, 64 GB RAM)

64× setup: 1× m6i.16xlarge EC2 instance (64 hwthreads, 256 GB RAM)

Sequential setup: One m6i.4xlarge EC2 instance

≤ 1000 s solving
≤ 4000 s proof prod.
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First feasible approach to have distributed clause-sharing solvers produce UNSAT proofs

Significantly outperform existing proof-producing solvers

Future work

Reduce overhead — improve LRAT support in SAT backends!

Proof production in Mallob’s scheduled mode?
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Parallel processing + distributed memory?

Trace dependencies of “�” by scanning all partial proofs
in reverse chronological order

Redistribute remote required clause IDs to their origin

Exploit structure of clause sharing to unroll dependencies

Align clause IDs to find out when to redistribute them
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Parallel processing + distributed memory?

Prune all partial proofs in parallel, then combine
— read each partial proof only once!

Unroll needed dependencies epoch by epoch
in reverse chronological order

Redistribute each required clause to its producer
— redistribute each ID only once!
— just before processing its originating epoch!

Align clause IDs to efficiently find epoch of a clause
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Transfer each remote required clause ID once!
— Defer redistribution until epoch of origin
— Detect duplicates while aggregating clause IDs

How to find epoch of origin of a remote clause ID?

— Align clause IDs at epoch borders during solving
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Local Processing

For each Si : Frontier Fi of req. clause IDs produced by Si ;
Backlog Bi of remote req. clause IDs

External-memory priority queues partitioned by epoch

Epoch e: Process proof parts from ep. e

Clause c with id(c) ∈ Fi : Insert each d ∈ deps(c) into Fi or Bi

Redistribution of Clause IDs

After processing epoch e: Extract IDs from ep. e − 1 from all Bi

All-reduction like Mallob’s clause sharing, detecting duplicate IDs

Strictly less communication than during solving
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Technology

Base SAT solver: CaDiCaL [Biere 2018] modified to output LRAT, restricted portfolio

Distributed solver: Mallob [Schreiber+Sanders 2021] extended by clause IDs + proof production

Proof checking: lrat-check from drat-trim tools (M. Heule)

Pipeline

1 Parallel solving (→ partial proofs)

2 Sequential or parallel proof assembly

3 Sequential postprocessing of assembled proof

4 Sequential proof checking
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