
Scalable SAT Solving on Demand

Highlights of Parallel Computing | ALGO 2024, Nantes

Dominik Schreiber, Peter Sanders | June 17, 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

Introduction • Scheduling • Solving • Conclusion • Appendix

The NP-complete problem SAT [Cook 1971]

Given a propositional formula F :=
∧

c∈C

(∨
ℓ∈c ℓ

)
, find a satisfying variable assignment

for F or report unsatisfiability.

SAT Solving: Fundamental building block for plethora of applications

Planning and scheduling

Formal verification

Testing and debugging

Cryptanalysis

Theorem proving

Electronic circuit design

2 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Motivation: SAT Solving

Introduction • Scheduling • Solving • Conclusion • Appendix

The NP-complete problem SAT [Cook 1971]

Given a propositional formula F :=
∧

c∈C

(∨
ℓ∈c ℓ

)
, find a satisfying variable assignment

for F or report unsatisfiability.

SAT Solving: Fundamental building block for plethora of applications

Planning and scheduling

Formal verification

Testing and debugging

Cryptanalysis

Theorem proving

Electronic circuit design

2 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Motivation: SAT Solving

Introduction • Scheduling • Solving • Conclusion • Appendix

Observation
We often face SAT instances of practical relevance
which are infeasible to solve with current methods.

Objective
Push the frontier of feasible problems using modern
distributed environments (HPC, clouds).

Challenges
Strongly sublinear scaling of parallel SAT solvers

Execution times unknown in advance

Formula encoding two multiplier circuits and their
logical equivalence; 4k variables, 13k clauses

3 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

SAT: Limits of Feasibility

Introduction • Scheduling • Solving • Conclusion • Appendix

Observation
We often face SAT instances of practical relevance
which are infeasible to solve with current methods.

Objective
Push the frontier of feasible problems using modern
distributed environments (HPC, clouds).

Challenges
Strongly sublinear scaling of parallel SAT solvers

Execution times unknown in advance

Formula encoding two multiplier circuits and their
logical equivalence; 4k variables, 13k clauses

3 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

SAT: Limits of Feasibility

Introduction • Scheduling • Solving • Conclusion • Appendix

Observation
We often face SAT instances of practical relevance
which are infeasible to solve with current methods.

Objective
Push the frontier of feasible problems using modern
distributed environments (HPC, clouds).

Challenges
Strongly sublinear scaling of parallel SAT solvers

Execution times unknown in advance

Formula encoding two multiplier circuits and their
logical equivalence; 4k variables, 13k clauses

3 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

SAT: Limits of Feasibility

Introduction • Scheduling • Solving • Conclusion • Appendix

Decentralized Scheduling
[SAT’21, Euro-Par’22]

Scalable distributed

[SAT’21, JAIR’24]

a i e h c b d f g

a i e h c
≺

b d f g

SAT Solving

4 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Overview

Introduction • Scheduling • Solving • Conclusion • Appendix

Job = binary tree of
distributed workers

5 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Decentralized Malleable Scheduling [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix

Job = binary tree of
distributed workers

new!

5 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Decentralized Malleable Scheduling [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix

Job = binary tree of
distributed workers

based on priorities, demands
Calculate fair job volumes

2 34

new!

5 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Decentralized Malleable Scheduling [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix

Job = binary tree of
distributed workers

based on priorities, demands
Calculate fair job volumes

2 34

new! 2 4 3

5 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Decentralized Malleable Scheduling [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix

Job = binary tree of
distributed workers

based on priorities, demands
Calculate fair job volumes

2 34

new! 2 4 3

5 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Decentralized Malleable Scheduling [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix

128 machines of SuperMUC-NG
– 1536 processes × 4 cores

Random arrival of random tasks

400 problems from Int’l SAT Competition 2020

Mean latencies
≈ 10 ms for scheduling a 1st worker
≈ 1 ms for calculating fair volumes
≈ 6 ms for finding+adding further workers

0 600 1200 1800 2400 3000 3600
Time [s]

0

100

200

300

#
ac

tiv
e

jo
bs

0 600 1200 1800 2400 3000 3600
Time [s]

0.995
0.996
0.997
0.998
0.999
1.000

U
til

iz
at

io
n

6 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Scheduling: Experiments [Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix

128 machines of SuperMUC-NG
– 1536 processes × 4 cores

Random arrival of random tasks

400 problems from Int’l SAT Competition 2020

Mean latencies
≈ 10 ms for scheduling a 1st worker
≈ 1 ms for calculating fair volumes
≈ 6 ms for finding+adding further workers

0 600 1200 1800 2400 3000 3600
Time [s]

0

100

200

300

#
ac

tiv
e

jo
bs

0 600 1200 1800 2400 3000 3600
Time [s]

0.995
0.996
0.997
0.998
0.999
1.000

U
til

iz
at

io
n

6 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Scheduling: Experiments [Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix

128 machines of SuperMUC-NG
– 1536 processes × 4 cores

Random arrival of random tasks

400 problems from Int’l SAT Competition 2020

Mean latencies
≈ 10 ms for scheduling a 1st worker
≈ 1 ms for calculating fair volumes
≈ 6 ms for finding+adding further workers

0 600 1200 1800 2400 3000 3600
Time [s]

0

100

200

300

#
ac

tiv
e

jo
bs

0 600 1200 1800 2400 3000 3600
Time [s]

0.995
0.996
0.997
0.998
0.999
1.000

U
til

iz
at

io
n

6 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Scheduling: Experiments [Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix

Decentralized Scheduling
[SAT’21, Euro-Par’22]

Scalable distributed

[SAT’21, JAIR’24]

a i e h c b d f g

a i e h c
≺

b d f g

SAT Solving

7 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Overview

Introduction • Scheduling • Solving • Conclusion • Appendix

The assembly of logicians
Complex logic puzzle

n logic experts want to solve the puzzle

Experts tend to work the best undisturbed

How to coordinate our experts?

3 9
7 3

6 8
9

4 5
4 9
8 3 5 9 2

3 6
9 6
7
2 8

6 8
3 8

8 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Parallel Logical Reasoning

Introduction • Scheduling • Solving • Conclusion • Appendix

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

Parallel portfolio

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

9 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Parallel Logical Reasoning

Introduction • Scheduling • Solving • Conclusion • Appendix

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

Parallel portfolio

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

9 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Parallel Logical Reasoning

Introduction • Scheduling • Solving • Conclusion • Appendix

Parallel portfolio

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

9 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Parallel Logical Reasoning

Introduction • Scheduling • Solving • Conclusion • Appendix

6@ (1,2)
3@ (2,8)

9@ (8,8) 4@ (4,5)

Parallel portfolio

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

9 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Parallel Logical Reasoning

Introduction • Scheduling • Solving • Conclusion • Appendix

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

7 7

7

77

7

6 6

66

6 6

6 6

6 6

6

6 6

6 6

6 6

44

4

4 4

4

3 3

3

3 3

9 9 9

99

9

Parallel portfolio

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

9 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Parallel Logical Reasoning

Introduction • Scheduling • Solving • Conclusion • Appendix

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

7 7

7

77

7

6 6

66

6 6

6 6

6 6

6

6 6

6 6

6 6

44

4

4 4

4

3 3

3

3 3

9 9 9

99

9

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6
6

64

7
6

3 9

1

1
1

1

1
1

1
1

1

2

2
2

2

2
2

23

3

4
4

4

4
4

5
5

5
5
5

5

8
8

8

7

7
7

7

7
7

9 3

85

9 4

9 6

Parallel portfolio

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

9 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Parallel Logical Reasoning

Introduction • Scheduling • Solving • Conclusion • Appendix

Parallel SAT solving [Hamadi et al. 2010]

Experts ≡ sequential search algorithms

Shared information ≡ learned conflict clauses

Prior state of the art: HordeSat [Balyo et al. 2015]
Periodic clause exchange

Concatenation of fixed-size clause buffers
Duplicates, unused space in buffers

Experiments with ≤ 2048 cores
Individual super-linear speedups (> 2048)
Median speedup at 2048 cores: 13 (efficiency 0.6%)

0 1

x ∨ ¬z

x

0 1
y

z
0 1

P1 P2 P3 P4 P5 P6 P7

10 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Distributed SAT solving: State of the art

Introduction • Scheduling • Solving • Conclusion • Appendix

Parallel SAT solving [Hamadi et al. 2010]

Experts ≡ sequential search algorithms

Shared information ≡ learned conflict clauses

Prior state of the art: HordeSat [Balyo et al. 2015]
Periodic clause exchange

Concatenation of fixed-size clause buffers
Duplicates, unused space in buffers

Experiments with ≤ 2048 cores
Individual super-linear speedups (> 2048)
Median speedup at 2048 cores: 13 (efficiency 0.6%)

0 1

⇒ z = 0

x

x ∨ ¬z

P1 P2 P3 P4 P5 P6 P7

10 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Distributed SAT solving: State of the art

Introduction • Scheduling • Solving • Conclusion • Appendix

Parallel SAT solving [Hamadi et al. 2010]

Experts ≡ sequential search algorithms

Shared information ≡ learned conflict clauses

Prior state of the art: HordeSat [Balyo et al. 2015]
Periodic clause exchange

Concatenation of fixed-size clause buffers
Duplicates, unused space in buffers

Experiments with ≤ 2048 cores
Individual super-linear speedups (> 2048)
Median speedup at 2048 cores: 13 (efficiency 0.6%)

0 1

⇒ z = 0

x

x ∨ ¬z

P1 P2 P3 P4 P5 P6 P7

10 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Distributed SAT solving: State of the art

Introduction • Scheduling • Solving • Conclusion • Appendix

Parallel SAT solving [Hamadi et al. 2010]

Experts ≡ sequential search algorithms

Shared information ≡ learned conflict clauses

Prior state of the art: HordeSat [Balyo et al. 2015]
Periodic clause exchange

Concatenation of fixed-size clause buffers
Duplicates, unused space in buffers

Experiments with ≤ 2048 cores
Individual super-linear speedups (> 2048)
Median speedup at 2048 cores: 13 (efficiency 0.6%)

0 1

⇒ z = 0

x

x ∨ ¬z

P1 P2 P3 P4 P5 P6 P7

10 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Distributed SAT solving: State of the art

Introduction • Scheduling • Solving • Conclusion • Appendix

Parallel SAT solving [Hamadi et al. 2010]

Experts ≡ sequential search algorithms

Shared information ≡ learned conflict clauses

Prior state of the art: HordeSat [Balyo et al. 2015]
Periodic clause exchange

Concatenation of fixed-size clause buffers
Duplicates, unused space in buffers

Experiments with ≤ 2048 cores
Individual super-linear speedups (> 2048)
Median speedup at 2048 cores: 13 (efficiency 0.6%)

0 1

⇒ z = 0

x

x ∨ ¬z

P1 P2 P3 P4 P5 P6 P7

10 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Distributed SAT solving: State of the art

Introduction • Scheduling • Solving • Conclusion • Appendix

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

1.

Filtering of recently shared clauses

a i e h c b d f g

3.

Checks against local table

Bit vector

11 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Clause sharing: Our approach [SAT’21, JAIR’24]

Introduction • Scheduling • Solving • Conclusion • Appendix

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

i c d f ga e h b c d f

Sorted aggregation

1.

(space-limited)

Filtering of recently shared clauses

a i e h c b d f g

3.

Checks against local table

Bit vector

11 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Clause sharing: Our approach [SAT’21, JAIR’24]

Introduction • Scheduling • Solving • Conclusion • Appendix

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Sorted aggregation

1.

(space-limited)

Filtering of recently shared clauses

a i e h c b d f g

3.

Checks against local table

Bit vector

11 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Clause sharing: Our approach [SAT’21, JAIR’24]

Introduction • Scheduling • Solving • Conclusion • Appendix

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Sorted aggregation

a i e h c b d f gBroadcast

1.

2.

(space-limited)

Filtering of recently shared clauses

a i e h c b d f g

3.

Checks against local table

Bit vector

11 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Clause sharing: Our approach [SAT’21, JAIR’24]

Introduction • Scheduling • Solving • Conclusion • Appendix

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Sorted aggregation

a i e h c b d f gBroadcast

1.

2.

(space-limited)

Filtering of recently shared clauses

a i e h c b d f g

3.

Checks against local table

Bit vector

11 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Clause sharing: Our approach [SAT’21, JAIR’24]

Introduction • Scheduling • Solving • Conclusion • Appendix

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Sorted aggregation

a i e h c b d f gBroadcast

1.

2.

(space-limited)

Filtering of recently shared clauses

a i e h c b d f g

3.

Aggregation:
Bitwise “OR”

11 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Clause sharing: Our approach [SAT’21, JAIR’24]

Introduction • Scheduling • Solving • Conclusion • Appendix

Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

a i e h c b d f g

i c d f ga e h b c d f

Sorted aggregation

a i e h c b d f gBroadcast

1.

2.

(space-limited)

Filtering of recently shared clauses

a i e h c b d f g

Broadcast

3.

4.
a i e h c b d f g

Aggregation:
Bitwise “OR”

Global filter vector

11 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Clause sharing: Our approach [SAT’21, JAIR’24]

Introduction • Scheduling • Solving • Conclusion • Appendix

24 48 96 192 384 768 1536 3072
cores of SuperMUC-NG (log. scale)

0

10

20

30

40

S
pe

ed
up

(g
eo

m
.

m
ea

n)

MALLOBSAT (KCL)
HORDESAT (L)

Seq. time ≥ 1 h ⇒ Speedup 419 at 3072 cores

Malleable scheduling
6400 cores, 2 h wallclock time, 400 formulas

Rigid: Each task gets 6400
400 = 16 cores

⇒ ∅ Response time: 26.7 min

Malleable: Resources of done jobs are
redistributed to remaining jobs
⇒ ∅ Response time: 21.1 min (−21%)

400 problems from SAT Comp. 2021 · Seq. baseline KISSAT_MAB-HYWALK · Seq. limit 32 h (331 solved) · Par. limit 300 s

12 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

MALLOBSAT: Results [JAIR’24]

Introduction • Scheduling • Solving • Conclusion • Appendix

24 48 96 192 384 768 1536 3072
cores of SuperMUC-NG (log. scale)

0

10

20

30

40

S
pe

ed
up

(g
eo

m
.

m
ea

n)

MALLOBSAT (KCL)
HORDESAT (L)
(# solved)

(257)
(187)

(331)

(299)

(337)

Seq. time ≥ 1 h ⇒ Speedup 419 at 3072 cores

Malleable scheduling
6400 cores, 2 h wallclock time, 400 formulas

Rigid: Each task gets 6400
400 = 16 cores

⇒ ∅ Response time: 26.7 min

Malleable: Resources of done jobs are
redistributed to remaining jobs
⇒ ∅ Response time: 21.1 min (−21%)

400 problems from SAT Comp. 2021 · Seq. baseline KISSAT_MAB-HYWALK · Seq. limit 32 h (331 solved) · Par. limit 300 s

12 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

MALLOBSAT: Results [JAIR’24]

Introduction • Scheduling • Solving • Conclusion • Appendix

24 48 96 192 384 768 1536 3072
cores of SuperMUC-NG (log. scale)

0

10

20

30

40

S
pe

ed
up

(g
eo

m
.

m
ea

n)

MALLOBSAT (KCL)
HORDESAT (L)
(# solved)

(257)
(187)

(331)

(299)

(337)
Seq. time ≥ 1 h ⇒ Speedup 419 at 3072 cores

Malleable scheduling
6400 cores, 2 h wallclock time, 400 formulas

Rigid: Each task gets 6400
400 = 16 cores

⇒ ∅ Response time: 26.7 min

Malleable: Resources of done jobs are
redistributed to remaining jobs
⇒ ∅ Response time: 21.1 min (−21%)

400 problems from SAT Comp. 2021 · Seq. baseline KISSAT_MAB-HYWALK · Seq. limit 32 h (331 solved) · Par. limit 300 s

12 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

MALLOBSAT: Results [JAIR’24]

Introduction • Scheduling • Solving • Conclusion • Appendix

24 48 96 192 384 768 1536 3072
cores of SuperMUC-NG (log. scale)

0

10

20

30

40

S
pe

ed
up

(g
eo

m
.

m
ea

n)

MALLOBSAT (KCL)
HORDESAT (L)
(# solved)

(257)
(187)

(331)

(299)

(337)
Seq. time ≥ 1 h ⇒ Speedup 419 at 3072 cores

Malleable scheduling
6400 cores, 2 h wallclock time, 400 formulas

Rigid: Each task gets 6400
400 = 16 cores

⇒ ∅ Response time: 26.7 min

Malleable: Resources of done jobs are
redistributed to remaining jobs
⇒ ∅ Response time: 21.1 min (−21%)

400 problems from SAT Comp. 2021 · Seq. baseline KISSAT_MAB-HYWALK · Seq. limit 32 h (331 solved) · Par. limit 300 s

12 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

MALLOBSAT: Results [JAIR’24]

Introduction • Scheduling • Solving • Conclusion • Appendix

Testimonials
“Mallob-mono is now, by a wide margin, the most powerful SAT solver
on the planet.” —Byron Cook, Amazon Science, 2021

https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

Best cloud solver @ International SAT Competition 2020–2023

References

github.com/
domschrei/mallob

[SAT’21] Schreiber, Sanders: Scalable SAT Solving in the Cloud
[Euro-Par’22] Sanders, Schreiber: Decentralized Job Scheduling

of Malleable NP-hard Jobs
[JOSS’22] Sanders, Schreiber: Mallob: Scalable SAT Solving

on Demand with Decentralized Job Scheduling
[JAIR’24] Schreiber, Sanders: MallobSat: Scalable SAT Solving

by Clause Sharing (to appear)

13 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Conclusion

https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

Introduction • Scheduling • Solving • Conclusion • Appendix

Behnke, Gregor, Daniel Höller, and Susanne Biundo. “totSAT – Totally-ordered hierarchical planning through SAT.” AAAI 2018.
Bercher, Pascal, Ron Alford, and Daniel Höller. “A Survey on Hierarchical Planning – One Abstract Idea, Many Concrete Realizations.”

IJCAI 2019.

Audemard, Gilles and Laurent Simon. “Predicting learnt clauses quality in modern SAT solvers.” IJCAI 2009.

Balyo, Tomáš, Peter Sanders, and Carsten Sinz. “Hordesat: A massively parallel portfolio SAT solver.” SAT 2015.

Biere, Armin. “CaDiCaL, Lingeling, Plingeling, Treengeling and YalSAT entering the SAT competition 2018.” SAT Competition 2018.
Biere, Armin, Katalin Fazekas, Mathias Fleury, and Maximilian Heisinger. “CaDiCaL, Kissat, Paracooba, Plingeling and Treengeling

entering the SAT Competition 2020.” SAT Competition 2020.

Cook, Stephen. “The complexity of theorem proving procedure.” 3rd Symp. on Theory of Computing (1971).

Feitelson, Dror G. “Job scheduling in multiprogrammed parallel systems.” IBM Research Report (1997).

Gao, Yu. “Kissat MAB prop in SAT Competition 2023.” SAT Competition 2023.

Hamadi, Youssef, Said Jabbour, and Lakhdar Sais. “ManySAT: a parallel SAT solver”. JSAT (2010).
Heule, Marijn J. H., Norbert Manthey, and Tobias Philipp. “Validating Unsatisfiability Results of Clause Sharing Parallel SAT Solvers.”

POS 2014.
Zheng, Jiongzhi, Kun He, Zhuo Chen, et al. “Combining Hybrid Walking Strategy with Kissat MAB, CaDiCaL, and LStech-Maple.”

SAT Competition 2022.

14 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

References

Introduction • Scheduling • Solving • Conclusion • Appendix

2 · Circuit: https://www.rawpixel.com/image/5907876/photo-image-background-public-domain-technology

2 · Planning/scheduling: https://www.pexels.com/photo/blue-printer-paper-7376/

2 · Cryptography: https://pixabay.com/vectors/computer-encrypt-encryption-1294045/

2 · Colored grid:
https://www.quantamagazine.org/the-number-15-describes-the-secret-limit-of-an-infinite-grid-20230420/

2 · Debugging: https://technofaq.org/posts/2017/12/heres-everything-you-need-to-know-about-software-testing/

15 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Image Sources

https://www.rawpixel.com/image/5907876/photo-image-background-public-domain-technology
https://www.pexels.com/photo/blue-printer-paper-7376/
https://pixabay.com/vectors/computer-encrypt-encryption-1294045/
https://www.quantamagazine.org/the-number-15-describes-the-secret-limit-of-an-infinite-grid-20230420/
https://technofaq.org/posts/2017/12/heres-everything-you-need-to-know-about-software-testing/

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Appendix
(German / English)

16 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Maschine Maschine

Maschine Maschine

Verteilte Rechenumgebung des Schedulers

m verteilte Prozesse

Arbeiter: Ausführungskontext einer bestimmten
Aufgabe auf einem bestimmten Prozess

Je Prozess:
≤ 1 aktive Arbeiter
≤ c unterbrochene Arbeiter
Eigenschaften jeder Aufgabe j ∈ J:

Priorität pj ∈ R+

Max. Ressourcen-Bedarf dj ∈ N+

17 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Ausführungsumgebung

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Rechenkern

Verteilte Rechenumgebung des Schedulers

m verteilte Prozesse

Arbeiter: Ausführungskontext einer bestimmten
Aufgabe auf einem bestimmten Prozess

Je Prozess:
≤ 1 aktive Arbeiter
≤ c unterbrochene Arbeiter
Eigenschaften jeder Aufgabe j ∈ J:

Priorität pj ∈ R+

Max. Ressourcen-Bedarf dj ∈ N+

17 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Ausführungsumgebung

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Prozess

Verteilte Rechenumgebung des Schedulers

m verteilte Prozesse

Arbeiter: Ausführungskontext einer bestimmten
Aufgabe auf einem bestimmten Prozess

Je Prozess:
≤ 1 aktive Arbeiter
≤ c unterbrochene Arbeiter
Eigenschaften jeder Aufgabe j ∈ J:

Priorität pj ∈ R+

Max. Ressourcen-Bedarf dj ∈ N+

17 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Ausführungsumgebung

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Netzwerk

Verteilte Rechenumgebung des Schedulers

m verteilte Prozesse

Arbeiter: Ausführungskontext einer bestimmten
Aufgabe auf einem bestimmten Prozess

Je Prozess:
≤ 1 aktive Arbeiter
≤ c unterbrochene Arbeiter
Eigenschaften jeder Aufgabe j ∈ J:

Priorität pj ∈ R+

Max. Ressourcen-Bedarf dj ∈ N+

17 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Ausführungsumgebung

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Arbeiter

Verteilte Rechenumgebung des Schedulers

m verteilte Prozesse

Arbeiter: Ausführungskontext einer bestimmten
Aufgabe auf einem bestimmten Prozess

Je Prozess:
≤ 1 aktive Arbeiter
≤ c unterbrochene Arbeiter

Eigenschaften jeder Aufgabe j ∈ J:
Priorität pj ∈ R+

Max. Ressourcen-Bedarf dj ∈ N+

17 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Ausführungsumgebung

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Unterbrochener Arbeiter

Verteilte Rechenumgebung des Schedulers

m verteilte Prozesse

Arbeiter: Ausführungskontext einer bestimmten
Aufgabe auf einem bestimmten Prozess

Je Prozess:
≤ 1 aktive Arbeiter
≤ c unterbrochene Arbeiter

Eigenschaften jeder Aufgabe j ∈ J:
Priorität pj ∈ R+

Max. Ressourcen-Bedarf dj ∈ N+

17 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Ausführungsumgebung

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Unterbrochener Arbeiter

Verteilte Rechenumgebung des Schedulers

m verteilte Prozesse

Arbeiter: Ausführungskontext einer bestimmten
Aufgabe auf einem bestimmten Prozess

Je Prozess:
≤ 1 aktive Arbeiter
≤ c unterbrochene Arbeiter
Eigenschaften jeder Aufgabe j ∈ J:

Priorität pj ∈ R+

Max. Ressourcen-Bedarf dj ∈ N+

17 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Ausführungsumgebung

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Definition: Malleability [Feitelson 1997]

A parallel computation is malleable if it supports a fluctuating number of
processing elements throughout its execution.

Why malleable scheduling for SAT solving?

Execution times unknown ⇒ Flexible reactions beneficial

Sublinear scaling ⇒ Parallel processing of multiple formulas increases efficiency

Malleability easy to achieve → 2nd part of the talk

18 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Scheduling: Motivation

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Definition: Malleability [Feitelson 1997]

A parallel computation is malleable if it supports a fluctuating number of
processing elements throughout its execution.

Why malleable scheduling for SAT solving?

Execution times unknown ⇒ Flexible reactions beneficial

Sublinear scaling ⇒ Parallel processing of multiple formulas increases efficiency

Malleability easy to achieve → 2nd part of the talk

18 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Scheduling: Motivation

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Definition: Malleability [Feitelson 1997]

A parallel computation is malleable if it supports a fluctuating number of
processing elements throughout its execution.

Why malleable scheduling for SAT solving?

Execution times unknown ⇒ Flexible reactions beneficial

Sublinear scaling ⇒ Parallel processing of multiple formulas increases efficiency

Malleability easy to achieve → 2nd part of the talk

18 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Scheduling: Motivation

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

Job j ⇒ x

19 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our scheduling approach [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

Job j ⇒ x

19 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our scheduling approach [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

Job j ⇒ x

19 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our scheduling approach [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

Job j ⇒ x

r 1j

Request

19 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our scheduling approach [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

Job j ⇒ x Idle process

r 1j

Request

19 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our scheduling approach [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

w 1
j⇒ xJob j 1st worker of j

r 1j

Request

19 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our scheduling approach [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

w 1
j

r 2j r 3j

⇒ x

vj = 6

Job j 1st worker of j

r 1j

Request

19 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our scheduling approach [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

w 1
j

w 2
j w 3

j

⇒ x

vj = 6

Job j 1st worker of j

r 1j

Request

19 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our scheduling approach [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

w 1
j

w 2
j w 3

j

⇒ x

r 4j r 6j

vj = 6

Job j 1st worker of j

r 1j

Request

r 5j

19 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our scheduling approach [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

w 1
j

w 2
j w 3

j

w 4
j w 5

j w 6
j

⇒ x

vj = 6

Job j 1st worker of j

r 1j

Request

19 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our scheduling approach [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

w 1
j

w 2
j w 3

j

w 4
j w 5

j w 6
j

⇒ x

vj = 2

Job j 1st worker of j

r 1j

Request

19 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our scheduling approach [SAT’21, Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Random-Walk-Methode

Prozess-Baum

.

. . .

100

Async. Präfixsummen

1 2 3

1 2 3
Σ≤

20 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Zuordnung von Anfragen und Prozessen [Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Random-Walk-Methode

Prozess-Baum

.

. . .

100

Async. Präfixsummen

1 2 3

1 2 3
Σ≤

20 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Zuordnung von Anfragen und Prozessen [Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Random-Walk-Methode Prozess-Baum

.

. . .

100

Async. Präfixsummen

1 2 3

1 2 3
Σ≤

20 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Zuordnung von Anfragen und Prozessen [Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Random-Walk-Methode Prozess-Baum

.

. . .

100

Async. Präfixsummen

1 2 3

1 2 3
Σ≤

20 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Zuordnung von Anfragen und Prozessen [Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Random-Walk-Methode Prozess-Baum

.

. . .

100

Async. Präfixsummen

1 2 3

1 2 3
Σ≤

20 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Zuordnung von Anfragen und Prozessen [Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Random-Walk-Methode Prozess-Baum

.

. . .

100

Async. Präfixsummen

1 2 3

1 2 3
Σ≤

20 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Zuordnung von Anfragen und Prozessen [Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Random-Walk-Methode Prozess-Baum

.

. . .

100

Async. Präfixsummen

1 2 3

1 2 3
Σ≤

20 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Zuordnung von Anfragen und Prozessen [Euro-Par’22]

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Solver configuration

Interfaces for well-performing solvers (KISSAT, CADICAL, LINGELING, GLUCOSE)
[Biere et al. 2018, 2020; Audemard & Simon 2009]

Little randomization ⇒ effective work subdivision via clause sharing

Malleability

Process tree for all communication

Arbitrary addition, removal of solver processes

“Mallob-mono is now, by a wide margin, the most powerful SAT solver on the planet.”

—Byron Cook, Amazon Distinguished Scientist, 2021
https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

Int. SAT Competition
2020–2023

21 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our system MALLOBSAT [SAT’21, JAIR’24]

https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Solver configuration

Interfaces for well-performing solvers (KISSAT, CADICAL, LINGELING, GLUCOSE)
[Biere et al. 2018, 2020; Audemard & Simon 2009]

Little randomization ⇒ effective work subdivision via clause sharing

Malleability

Process tree for all communication

Arbitrary addition, removal of solver processes

“Mallob-mono is now, by a wide margin, the most powerful SAT solver on the planet.”

—Byron Cook, Amazon Distinguished Scientist, 2021
https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

Int. SAT Competition
2020–2023

21 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our system MALLOBSAT [SAT’21, JAIR’24]

https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

Introduction • Scheduling • Solving • Conclusion • Appendix (Intro – Scheduling – Solving – Proving – Planning)

Solver configuration

Interfaces for well-performing solvers (KISSAT, CADICAL, LINGELING, GLUCOSE)
[Biere et al. 2018, 2020; Audemard & Simon 2009]

Little randomization ⇒ effective work subdivision via clause sharing

Malleability

Process tree for all communication

Arbitrary addition, removal of solver processes

“Mallob-mono is now, by a wide margin, the most powerful SAT solver on the planet.”

—Byron Cook, Amazon Distinguished Scientist, 2021
https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

Int. SAT Competition
2020–2023

21 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Our system MALLOBSAT [SAT’21, JAIR’24]

https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

