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The NP-complete problem SAT [Cook 1971]

Given a propositional formula F :=
∧

c∈C

(∨
ℓ∈c ℓ

)
, find a satisfying variable assignment

for F or report unsatisfiability.

SAT Solving: Fundamental building block for plethora of applications

Planning and scheduling

Formal verification

Testing and debugging

Cryptanalysis

Theorem proving

Electronic circuit design
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Observation
We often face SAT instances of practical relevance
which are infeasible to solve with current methods.

Objective
Push the frontier of feasible problems using modern
distributed environments (HPC, clouds).

Challenges
Strongly sublinear scaling of parallel SAT solvers

Execution times unknown in advance

Formula encoding two multiplier circuits and their
logical equivalence; 4k variables, 13k clauses
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Decentralized Scheduling
[SAT’21, Euro-Par’22]

Scalable distributed

[SAT’21, JAIR’24]

a i e h c b d f g

a i e h c
≺

b d f g

SAT Solving

4 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Overview



Introduction • Scheduling • Solving • Conclusion • Appendix

Job = binary tree of
distributed workers
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Job = binary tree of
distributed workers

based on priorities, demands
Calculate fair job volumes

2 34

new!
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128 machines of SuperMUC-NG
– 1536 processes × 4 cores

Random arrival of random tasks

400 problems from Int’l SAT Competition 2020

Mean latencies
≈ 10 ms for scheduling a 1st worker
≈ 1 ms for calculating fair volumes
≈ 6 ms for finding+adding further workers
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The assembly of logicians
Complex logic puzzle

n logic experts want to solve the puzzle

Experts tend to work the best undisturbed

How to coordinate our experts?
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Parallel portfolio

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!
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Parallel SAT solving [Hamadi et al. 2010]

Experts ≡ sequential search algorithms

Shared information ≡ learned conflict clauses

Prior state of the art: HordeSat [Balyo et al. 2015]
Periodic clause exchange

Concatenation of fixed-size clause buffers
Duplicates, unused space in buffers

Experiments with ≤ 2048 cores
Individual super-linear speedups (> 2048)
Median speedup at 2048 cores: 13 (efficiency 0.6%)

0 1

x ∨ ¬z

x

0 1
y

z
0 1

P1 P2 P3 P4 P5 P6 P7
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Exchange of useful clauses

a b c d

e f g

b c f a e h d c di c

1.

Filtering of recently shared clauses

a i e h c b d f g

3.

Checks against local table

Bit vector
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Clause sharing: Our approach [SAT’21, JAIR’24]
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Rigid: Each task gets 6400
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400 problems from SAT Comp. 2021 · Seq. baseline KISSAT_MAB-HYWALK · Seq. limit 32 h (331 solved) · Par. limit 300 s
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Testimonials
“Mallob-mono is now, by a wide margin, the most powerful SAT solver
on the planet.” —Byron Cook, Amazon Science, 2021

https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

Best cloud solver @ International SAT Competition 2020–2023
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2 · Circuit: https://www.rawpixel.com/image/5907876/photo-image-background-public-domain-technology

2 · Planning/scheduling: https://www.pexels.com/photo/blue-printer-paper-7376/

2 · Cryptography: https://pixabay.com/vectors/computer-encrypt-encryption-1294045/

2 · Colored grid:
https://www.quantamagazine.org/the-number-15-describes-the-secret-limit-of-an-infinite-grid-20230420/

2 · Debugging: https://technofaq.org/posts/2017/12/heres-everything-you-need-to-know-about-software-testing/
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Maschine Maschine

Maschine Maschine

Verteilte Rechenumgebung des Schedulers

m verteilte Prozesse

Arbeiter: Ausführungskontext einer bestimmten
Aufgabe auf einem bestimmten Prozess

Je Prozess:
≤ 1 aktive Arbeiter
≤ c unterbrochene Arbeiter
Eigenschaften jeder Aufgabe j ∈ J:

Priorität pj ∈ R+

Max. Ressourcen-Bedarf dj ∈ N+
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Definition: Malleability [Feitelson 1997]

A parallel computation is malleable if it supports a fluctuating number of
processing elements throughout its execution.

Why malleable scheduling for SAT solving?

Execution times unknown ⇒ Flexible reactions beneficial

Sublinear scaling ⇒ Parallel processing of multiple formulas increases efficiency

Malleability easy to achieve → 2nd part of the talk

18 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Scheduling: Motivation



Introduction • Scheduling • Solving • Conclusion • Appendix ( Intro – Scheduling – Solving – Proving – Planning )

Definition: Malleability [Feitelson 1997]

A parallel computation is malleable if it supports a fluctuating number of
processing elements throughout its execution.

Why malleable scheduling for SAT solving?

Execution times unknown ⇒ Flexible reactions beneficial

Sublinear scaling ⇒ Parallel processing of multiple formulas increases efficiency

Malleability easy to achieve → 2nd part of the talk

18 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Scheduling: Motivation



Introduction • Scheduling • Solving • Conclusion • Appendix ( Intro – Scheduling – Solving – Proving – Planning )

Definition: Malleability [Feitelson 1997]

A parallel computation is malleable if it supports a fluctuating number of
processing elements throughout its execution.

Why malleable scheduling for SAT solving?

Execution times unknown ⇒ Flexible reactions beneficial

Sublinear scaling ⇒ Parallel processing of multiple formulas increases efficiency

Malleability easy to achieve → 2nd part of the talk

18 2024-06-17 Schreiber, Sanders: Scalable SAT Solving on Demand KIT | ITI | Algorithm Engineering

Scheduling: Motivation



Introduction • Scheduling • Solving • Conclusion • Appendix ( Intro – Scheduling – Solving – Proving – Planning )

Job model: priority pj ; max. resource demand dj ; set of exclusive associated resources (workers)

Problem 1: For each active job j , determine a fair number 1 ≤ vj ≤ dj of workers in such a way that vj ∝ pj

Theory: Fully scalable algorithm with span O(logm) via collective operations
Practice: Aggregate events which alter system state → locally compute new assignments

Problem 2: Assign vj actual processes to each job j

Job j ⇒ x
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Our scheduling approach [SAT’21, Euro-Par’22]
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Solver configuration

Interfaces for well-performing solvers (KISSAT, CADICAL, LINGELING, GLUCOSE)
[Biere et al. 2018, 2020; Audemard & Simon 2009]

Little randomization ⇒ effective work subdivision via clause sharing

Malleability

Process tree for all communication

Arbitrary addition, removal of solver processes

“Mallob-mono is now, by a wide margin, the most powerful SAT solver on the planet.”

—Byron Cook, Amazon Distinguished Scientist, 2021
https://www.amazon.science/blog/automated-reasonings-scientific-frontiers

Int. SAT Competition
2020–2023
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