
An Empirical Study on Learned Clause Overlaps
In Distributed SAT Solving
Pragmatics of SAT 2024, Pune, India

Jannick Borowitz, Dominik Schreiber, Peter Sanders | August 20, 2024

KIT – The Research University in the Helmholtz Association www.kit.edu

https://www.kit.edu

The assembly of logicians
Complex logic puzzle

n logic experts want to solve the puzzle

Experts tend to work the best undisturbed

How to coordinate our experts?

3 9
7 3

6 8
9

4 5
4 9
8 3 5 9 2

3 6
9 6
7
2 8

6 8
3 8

2/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Parallel Logical Reasoning

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

3/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Cooperative Portfolio

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

3/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Cooperative Portfolio

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

3/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Cooperative Portfolio

6@ (1,2)
3@ (2,8)

9@ (8,8) 4@ (4,5)

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

3/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Cooperative Portfolio

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

7 7

7

77

7

6 6

66

6 6

6 6

6 6

6

6 6

6 6

6 6

44

4

4 4

4

3 3

3

3 3

9 9 9

99

9

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

3/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Cooperative Portfolio

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6

6
6

6

7

4

3

4
4

85

9
6

3

3

3 9

6
6

64

3

76
6

7 7

7

77

7

6 6

66

6 6

6 6

6 6

6

6 6

6 6

6 6

44

4

4 4

4

3 3

3

3 3

9 9 9

99

9

3 9
73

68
9

45
49
8 3 5 9 2

36
96
7
28

68
3 8

6
6

64

7
6

3 9

1

1
1

1

1
1

1
1

1

2

2
2

2

2
2

23

3

4
4

4

4
4

5
5

5
5
5

5

8
8

8

7

7
7

7

7
7

9 3

85

9 4

9 6

All experts work on original
problem independently

Brief meetings to exchange
crucial insights

Insights accelerate solving

Only one expert needs to find a
solution!

3/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Cooperative Portfolio

Parallel & Distributed SAT solving

Experts ≡ diversified sequential solver threads

Shared information ≡ learned conflict clauses

State of the art: MALLOBSAT (two talks later!)

Periodic all-to-all clause sharing with duplicate detection and filtering of repeated clauses

Strongly sublinear scaling in most cases

How diverse, how redundant is the work performed by our solver threads?

Research questions

How big is the overlap in learned clause sets across solver threads?

Can these overlaps serve as a proxy for redundant work performed?

Can we gain insights on suboptimal solver design based on learned clause overlaps?

4/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Motivation

Parallel & Distributed SAT solving

Experts ≡ diversified sequential solver threads

Shared information ≡ learned conflict clauses

State of the art: MALLOBSAT (two talks later!)

Periodic all-to-all clause sharing with duplicate detection and filtering of repeated clauses

Strongly sublinear scaling in most cases

How diverse, how redundant is the work performed by our solver threads?

Research questions

How big is the overlap in learned clause sets across solver threads?

Can these overlaps serve as a proxy for redundant work performed?

Can we gain insights on suboptimal solver design based on learned clause overlaps?

4/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Motivation

Parallel & Distributed SAT solving

Experts ≡ diversified sequential solver threads

Shared information ≡ learned conflict clauses

State of the art: MALLOBSAT (two talks later!)

Periodic all-to-all clause sharing with duplicate detection and filtering of repeated clauses

Strongly sublinear scaling in most cases

How diverse, how redundant is the work performed by our solver threads?

Research questions

How big is the overlap in learned clause sets across solver threads?

Can these overlaps serve as a proxy for redundant work performed?

Can we gain insights on suboptimal solver design based on learned clause overlaps?

4/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Motivation

Goal: Log all clauses produced by all solver threads together with some meta data.

Problem: Many millions of clauses per second

Solution: Apply 64-bit high-quality hash function h to c, report clause only if h(c) mod 16 = 0.
⇒ Sampling factor 1:16 (-4 bits)

Logging scheme: Report r = (h(c)
16 , tc , pc , sc , dc , gc)

tc : timestamp of logging

pc : index of producing process

sc : producing solver’s local solver ID within the process

dc : clause length

gc : clause LBD score

Accuracy: ≤ 1 expected hash collision at one billion hashed objects

5/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Clause Logging Scheme

Goal: Log all clauses produced by all solver threads together with some meta data.

Problem: Many millions of clauses per second

Solution: Apply 64-bit high-quality hash function h to c, report clause only if h(c) mod 16 = 0.
⇒ Sampling factor 1:16 (-4 bits)

Logging scheme: Report r = (h(c)
16 , tc , pc , sc , dc , gc)

tc : timestamp of logging

pc : index of producing process

sc : producing solver’s local solver ID within the process

dc : clause length

gc : clause LBD score

Accuracy: ≤ 1 expected hash collision at one billion hashed objects

5/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Clause Logging Scheme

Goal: Log all clauses produced by all solver threads together with some meta data.

Problem: Many millions of clauses per second

Solution: Apply 64-bit high-quality hash function h to c, report clause only if h(c) mod 16 = 0.
⇒ Sampling factor 1:16 (-4 bits)

Logging scheme: Report r = (h(c)
16 , tc , pc , sc , dc , gc)

tc : timestamp of logging

pc : index of producing process

sc : producing solver’s local solver ID within the process

dc : clause length

gc : clause LBD score

Accuracy: ≤ 1 expected hash collision at one billion hashed objects

5/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Clause Logging Scheme

Goal: Log all clauses produced by all solver threads together with some meta data.

Problem: Many millions of clauses per second

Solution: Apply 64-bit high-quality hash function h to c, report clause only if h(c) mod 16 = 0.
⇒ Sampling factor 1:16 (-4 bits)

Logging scheme: Report r = (h(c)
16 , tc , pc , sc , dc , gc)

tc : timestamp of logging

pc : index of producing process

sc : producing solver’s local solver ID within the process

dc : clause length

gc : clause LBD score

Accuracy: ≤ 1 expected hash collision at one billion hashed objects

5/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Clause Logging Scheme

Assume we have a set of reports R whose set of unique hashes is H(R).

Measuring the overall overlap of produced clauses:
Duplicate Clause Production Ratio (DCPR)

DCPR(R) =

{ |R|−|H(R)|
|R| if |R| ≥ 1

0 otherwise

Measuring the overlap between two particular solvers:
Pairwise Produced Clause Overlap (PPCO)

PPCO(Rx ,Ry) =

{ |H(Rx) ∩ H(Ry)|
|H(Rx) ∪ H(Ry)| if |H(Rx)|+ |H(Ry)| ≥ 1

0 otherwise

(a.k.a. Jaccard index for measuring similarity between two sets)

6/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Metrics

Assume we have a set of reports R whose set of unique hashes is H(R).

Measuring the overall overlap of produced clauses:
Duplicate Clause Production Ratio (DCPR)

DCPR(R) =

{ |R|−|H(R)|
|R| if |R| ≥ 1

0 otherwise

Measuring the overlap between two particular solvers:
Pairwise Produced Clause Overlap (PPCO)

PPCO(Rx ,Ry) =

{ |H(Rx) ∩ H(Ry)|
|H(Rx) ∪ H(Ry)| if |H(Rx)|+ |H(Ry)| ≥ 1

0 otherwise

(a.k.a. Jaccard index for measuring similarity between two sets)

6/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Metrics

Assume we have a set of reports R whose set of unique hashes is H(R).

Measuring the overall overlap of produced clauses:
Duplicate Clause Production Ratio (DCPR)

DCPR(R) =

{ |R|−|H(R)|
|R| if |R| ≥ 1

0 otherwise

Measuring the overlap between two particular solvers:
Pairwise Produced Clause Overlap (PPCO)

PPCO(Rx ,Ry) =

{ |H(Rx) ∩ H(Ry)|
|H(Rx) ∪ H(Ry)| if |H(Rx)|+ |H(Ry)| ≥ 1

0 otherwise

(a.k.a. Jaccard index for measuring similarity between two sets)

6/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Metrics

Solver: MALLOBSAT

Cycling through KISSAT, CADICAL, and LINGELING

Allow sharing, logging of clauses up to length 60 (and LBD 60)

Full diversification: Seeds, sparse random variable phases, configuration options

Hardware: HPC clusters SuperMUC-NG and HoreKa

SuperMUC-NG (LRZ Munich): per node 2 × 24 cores, 96 GB RAM

HoreKa (SCC Karlsruhe): per node 2 × 38 cores, 256 GB RAM

Benchmarks: 400 instances of SAT Competition 2022

Some experiments: only 349 instances which some solver @ SAT comp ’22 solved

300 s wallclock time per instance

7/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Experimental Setup

Solver: MALLOBSAT

Cycling through KISSAT, CADICAL, and LINGELING

Allow sharing, logging of clauses up to length 60 (and LBD 60)

Full diversification: Seeds, sparse random variable phases, configuration options

Hardware: HPC clusters SuperMUC-NG and HoreKa

SuperMUC-NG (LRZ Munich): per node 2 × 24 cores, 96 GB RAM

HoreKa (SCC Karlsruhe): per node 2 × 38 cores, 256 GB RAM

Benchmarks: 400 instances of SAT Competition 2022

Some experiments: only 349 instances which some solver @ SAT comp ’22 solved

300 s wallclock time per instance

7/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Experimental Setup

Solver: MALLOBSAT

Cycling through KISSAT, CADICAL, and LINGELING

Allow sharing, logging of clauses up to length 60 (and LBD 60)

Full diversification: Seeds, sparse random variable phases, configuration options

Hardware: HPC clusters SuperMUC-NG and HoreKa

SuperMUC-NG (LRZ Munich): per node 2 × 24 cores, 96 GB RAM

HoreKa (SCC Karlsruhe): per node 2 × 38 cores, 256 GB RAM

Benchmarks: 400 instances of SAT Competition 2022

Some experiments: only 349 instances which some solver @ SAT comp ’22 solved

300 s wallclock time per instance

7/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Experimental Setup

1 node 4 nodes 16 nodes
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
C

P
R

(349) (349) (349)

At 16 nodes (768 cores), two thirds of
produced clauses are still unique.

0 10 20 30 40 50 60
clause size l

0.0

0.5

1.0

1.5

2.0

#
 cl

au
se

 p
ro

du
cti

on
s [

%
]

all
dup.

Clauses of length < 10 have highest overlaps.

8/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Overview

1 node 4 nodes 16 nodes
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
C

P
R

(349) (349) (349)

At 16 nodes (768 cores), two thirds of
produced clauses are still unique.

0 10 20 30 40 50 60
clause size l

0.0

0.5

1.0

1.5

2.0

#
 cl

au
se

 p
ro

du
cti

on
s [

%
]

all
dup.

Clauses of length < 10 have highest overlaps.

8/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Overview

DCPR

Family, result # min median mean▲ max

pigeon-hole-unsat 2 0.004 0.082 0.019 0.082
minimum-disagreement-parity-unsat 3 0.018 0.046 0.034 0.047
grid-coloring-sat 10 0.007 0.043 0.042 0.311
algorithm-equivalence-checking-unsat 13 0.018 0.049 0.050 0.161
graph-isomorphism-unsat 8 0.024 0.063 0.052 0.091
. . .
planning-unsat 2 0.817 0.992 0.900 0.992
planning-sat 3 0.943 0.966 0.964 0.982
graceful-production-sat 13 0.969 0.981 0.979 0.984
sat-x-sat 2 0.974 0.986 0.980 0.986
software-verification-unsat 14 0.971 0.980 0.981 0.990

9/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

By Benchmark Family

Vast majority of duplicates are produced
in the first few seconds of solving

E.g., median DCPR of 0.28 after 3 s –
≈ 80% of full run’s duplicates!

60% of duplicates are produced within 4 s
after the clause’s 1st production

Similar results for “long runs” (e.g., ≥ 60 s)

Explains why filtering recently shared
clauses works well for short horizons

0.25 1 4 16 64 256

Time t (log. scale) [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
h

ar
e

of
d

u
p

li
ca

te
s

w
it

h
t r

e
l
≤
t

all

≥ 30 s

≥ 60 s

10/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Temporal distribution

Vast majority of duplicates are produced
in the first few seconds of solving

E.g., median DCPR of 0.28 after 3 s –
≈ 80% of full run’s duplicates!

60% of duplicates are produced within 4 s
after the clause’s 1st production

Similar results for “long runs” (e.g., ≥ 60 s)

Explains why filtering recently shared
clauses works well for short horizons

0.25 1 4 16 64 256

Time t (log. scale) [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
h

a
re

o
f

d
u

p
li

ca
te

s
w

it
h
t r

e
l
≤
t

all

≥ 30 s

≥ 60 s

10/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Temporal distribution

Vast majority of duplicates are produced
in the first few seconds of solving

E.g., median DCPR of 0.28 after 3 s –
≈ 80% of full run’s duplicates!

60% of duplicates are produced within 4 s
after the clause’s 1st production

Similar results for “long runs” (e.g., ≥ 60 s)

Explains why filtering recently shared
clauses works well for short horizons

0.25 1 4 16 64 256

Time t (log. scale) [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
h

a
re

o
f

d
u

p
li

ca
te

s
w

it
h
t r

e
l
≤
t

all

≥ 30 s

≥ 60 s

10/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Temporal distribution

Impact of diversification

Baseline No phases Seeds only
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
C

P
R

(349) (349) (349)

Impact of disabling clause sharing

DCPR: 0.34 → 0.41

⇒ Clause sharing diversifies
produced clauses

87 fewer instances solved

11/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Diversification and Sharing

Impact of diversification

Baseline No phases Seeds only
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D
C

P
R

(349) (349) (349)

Impact of disabling clause sharing

DCPR: 0.34 → 0.41

⇒ Clause sharing diversifies
produced clauses

87 fewer instances solved

11/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Diversification and Sharing

Mean PPCO

0 4 8 12 16 20 24 28 32 36 40 44

0
4
8

12
16
20
24
28
32
36
40
44

0.0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1
0.11
0.12
0.13
0.14
0.15
0.16
0.17
0.18
0.19
0.2
0.21

Max PPCO

0 4 8 12 16 20 24 28 32 36 40 44

0
4
8

12
16
20
24
28
32
36
40
44

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

12/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Pairwise Overlaps: Baseline (KISSAT-CADICAL-LINGELING)

0 4 8 12 16 20 24 28 32 36 40 44

0
4
8

12
16
20
24
28
32
36
40
44

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Diagonals: Pairs of the same configuration have
larger overlaps

Smaller overlaps for modified restart intervals
(C1, C6), flipped default phase (C0)

Higher overlaps for pairs of the same process
1st process always “lives the longest”
→ possible bias
Tree structure of sharing
→ clauses arrive at different points in time

13/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Pairwise Overlaps: CADICAL only

0 4 8 12 16 20 24 28 32 36 40 44

0
4
8

12
16
20
24
28
32
36
40
44

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Diagonals: Pairs of the same configuration have
larger overlaps

Smaller overlaps for modified restart intervals
(C1, C6), flipped default phase (C0)
Higher overlaps for pairs of the same process

1st process always “lives the longest”
→ possible bias
Tree structure of sharing
→ clauses arrive at different points in time

13/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Pairwise Overlaps: CADICAL only

0 4 8 12 16 20 24 28 32 36 40 44

0
4
8

12
16
20
24
28
32
36
40
44

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Higher overlaps than for CADICAL!
Possible explanation for relatively poor
performance of KISSAT vs. CADICAL in
MALLOBSAT

Low overlaps for altered restart intervals and
disabling simplification techniques

Together with excessive ternary clauses:
primary suspect hyper-ternary resolution (HTR)

Disabling HTR: DCPR 0.47 → 0.33, +3 solved

14/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Pairwise Overlaps: KISSAT’20 only

0 4 8 12 16 20 24 28 32 36 40 44

0
4
8

12
16
20
24
28
32
36
40
44

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Higher overlaps than for CADICAL!
Possible explanation for relatively poor
performance of KISSAT vs. CADICAL in
MALLOBSAT

Low overlaps for altered restart intervals and
disabling simplification techniques

Together with excessive ternary clauses:
primary suspect hyper-ternary resolution (HTR)

Disabling HTR: DCPR 0.47 → 0.33, +3 solved

14/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Pairwise Overlaps: KISSAT’20 only

0 4 8 12 16 20 24 28 32 36 40 44

0
4
8

12
16
20
24
28
32
36
40
44

0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

Higher overlaps than for CADICAL!
Possible explanation for relatively poor
performance of KISSAT vs. CADICAL in
MALLOBSAT

Low overlaps for altered restart intervals and
disabling simplification techniques

Together with excessive ternary clauses:
primary suspect hyper-ternary resolution (HTR)

Disabling HTR: DCPR 0.47 → 0.33, +3 solved

14/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Pairwise Overlaps: KISSAT’20 only

0 4 8 12 16 20 24 28 32 36 40 44

0
4
8

12
16
20
24
28
32
36
40
44

0.0

0.01

0.02

0.03

0.04

0.05

Very low overlaps!

“Missing” several inprocessing techniques like
hyper-ternary resolution

322 solved (KISSAT’20: 315 solved)

15/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Pairwise Overlaps: KISSAT’23 only

Can our findings translate to solver improvements?

Turn off KISSAT’s HTR (combat excessive ternary duplicates)

Let the i-th LINGELING only export units c with hc mod n ∈ {i, i + 1} (combat excessive unit duplicates)

Delay i-th solver thread’s first successful clause import by i mod 11 import queries

Results on validation set (SAT comp ’23)

Drastic reduction of DCPR: 0.37 → 0.22

Mild performance improvements: geom. mean speedup 2.7%, 58% of instances solved faster

Why are clause overlaps not an accurate measure for redundant work?

Some tasks in a solver are not reflected by an exported clause

Some bursts of exported clauses (e.g., from some inprocessing) are very inexpensive (per clause)

16/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Mitigations and Improvements

Can our findings translate to solver improvements?

Turn off KISSAT’s HTR (combat excessive ternary duplicates)

Let the i-th LINGELING only export units c with hc mod n ∈ {i, i + 1} (combat excessive unit duplicates)

Delay i-th solver thread’s first successful clause import by i mod 11 import queries

Results on validation set (SAT comp ’23)

Drastic reduction of DCPR: 0.37 → 0.22

Mild performance improvements: geom. mean speedup 2.7%, 58% of instances solved faster

Why are clause overlaps not an accurate measure for redundant work?

Some tasks in a solver are not reflected by an exported clause

Some bursts of exported clauses (e.g., from some inprocessing) are very inexpensive (per clause)

16/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Mitigations and Improvements

Can our findings translate to solver improvements?

Turn off KISSAT’s HTR (combat excessive ternary duplicates)

Let the i-th LINGELING only export units c with hc mod n ∈ {i, i + 1} (combat excessive unit duplicates)

Delay i-th solver thread’s first successful clause import by i mod 11 import queries

Results on validation set (SAT comp ’23)

Drastic reduction of DCPR: 0.37 → 0.22

Mild performance improvements: geom. mean speedup 2.7%, 58% of instances solved faster

Why are clause overlaps not an accurate measure for redundant work?

Some tasks in a solver are not reflected by an exported clause

Some bursts of exported clauses (e.g., from some inprocessing) are very inexpensive (per clause)

16/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Mitigations and Improvements

Central findings

Produced clauses in distributed solving are less redundant than one might expect

Duplicates often tied to in–/preprocessing, often co-occur in close succession

Diversification: Variable phases, restart intervals have large impact on produced clauses

Found explanations for some earlier observations (KISSAT performance, short-horizon clause filtering)

Limitations

Only considered syntactical equality of clauses

Black-box approach with unmodified solver backends
vs. deeper look into provenance of individual clauses

Only MALLOBSAT – what about other systems?

Try our analysis tool on your solver!
github.com/jabo17/clause-lab

17/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Conclusion

Central findings

Produced clauses in distributed solving are less redundant than one might expect

Duplicates often tied to in–/preprocessing, often co-occur in close succession

Diversification: Variable phases, restart intervals have large impact on produced clauses

Found explanations for some earlier observations (KISSAT performance, short-horizon clause filtering)

Limitations

Only considered syntactical equality of clauses

Black-box approach with unmodified solver backends
vs. deeper look into provenance of individual clauses

Only MALLOBSAT – what about other systems?

Try our analysis tool on your solver!
github.com/jabo17/clause-lab

17/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Conclusion

0 4 8 12 16 20 24 28 32 36 40 44

0
4
8

12
16
20
24
28
32
36
40
44

0.0

0.05

0.1

0.15

0.2

0.25

≥ 0.3

Smooth structure

Configuration C1 disables simplification
techniques → Smaller overlaps!

18/17 2024-08-20 Borowitz, Schreiber, Sanders: Study on Clause Overlaps in Distributed SAT KIT | Algorithm Engineering

Pairwise Overlaps: LINGELING only

