AT

Karlsruher Institut fir Technologie

~

Algorithm /1
Engineering |
A &

Trusted Scalable SAT Solving with on-the-fly LRAT Checking

SAT 2024, Pune, India
Dominik Schreiber | August 22, 2024

KIT — The Research University in the Helmholtz Association

el R o) e
= :é"ﬁ‘\\l.)| Ot |
A XN)

Open PhD position!

-)

s.kit.edu/satres

Scalable Automated Reasoning

L <1

-

www.kit.edu

https://www.kit.edu

Motivation

Distributed clause-sharing solvers push the frontier of feasible problems.

@ Many sequential CDCL solvers run in parallel
@ Careful exchange of useful conflict clauses
@ Mean speedup of 419 @ 3072 cores for difficult instances [SS24]

2/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

{ iy,

KIT | Algorithm Engineering

KIT

.
Motivation

Distributed clause-sharing solvers push the frontier of feasible problems. 7
® Many sequential CDCL solvers run in parallel | %
@ Careful exchange of useful conflict clauses '
@ Mean speedup of 419 @ 3072 cores for difficult instances [SS24] [g,

Proofs of unsatisfiability are central for trust in SAT solving.
@ Model checking critical software? claims safety!
a Suffices to trust independent proof checker (+ underlying technology)

2/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

.
Motivation

Distributed clause-sharing solvers push the frontier of feasible problems.
® Many sequential CDCL solvers run in parallel
@ Careful exchange of useful conflict clauses
@ Mean speedup of 419 @ 3072 cores for difficult instances [SS24]

Proofs of unsatisfiability are central for trust in SAT solving.
@ Model checking critical software? claims safety!
a Suffices to trust independent proof checker (+ underlying technology)

Parallel & distributed solvers are than sequential solvers.
@ |arge technology stack leaves
@ More to test rigorously

@ Fragile — in a clause can induce a

2/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

The Story Thus Far A“(IT

Karlsruhe Institute of Technology

Producing proofs from parallel clause sharing is . avhb

bVc

@ Popular DRAT format in parallel settings [HMP14; FB22] £ ave
E delaVb

3/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

The Story Thus Far
Producing proofs from parallel clause sharing is
& Popular DRAT format in parallel settings [HMP14; FB22]

a Explicit dependency data in LRAT format allows for feasible
distributed proof production [Mic+23]

3/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

[
<
1
[=]

LRAT

KIT

Karlsruhe Institute of Technology

aVvb
bVc
aVvece
del aVb

1765 : aV b | 823,1277
1766 : bV c | 1338,54
1767 : aV ¢ | 1765, 1766
del 1765

KIT | Algorithm Engineering

The Story Thus Far

Producing proofs from parallel clause sharing is
& Popular DRAT format in parallel settings [HMP14; FB22]

a Explicit dependency data in LRAT format allows for feasible
distributed proof production [Mic+23]
Write individual partial proofs during solving
Rewind solving + sharing, required derivations into single file
Check combined proof file

3/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

DRAT

LRAT

KIT

Karlsruhe Institute of Technology

aVvb
bVc
aVvece
del aVb

1765 : aV b | 823,1277
1766 : bV c | 1338,54
1767 : aV ¢ | 1765, 1766
del 1765

SN&
+ proof logging
Processing, checking

KIT | Algorithm Engineering

The Story Thus Far

Producing proofs from parallel clause sharing is
& Popular DRAT format in parallel settings [HMP14; FB22]

a Explicit dependency data in LRAT format allows for feasible
distributed proof production [Mic+23]
Write individual partial proofs during solving
Rewind solving + sharing, required derivations into single file
Check combined proof file

a Bottleneck: assembly and checking of
a at final process
® Sometimes of proof information

® Proof production + checking @ 1520 cores takes
(latest setup — submitted to JAR)
Intuition “If solving fits into RAM, checking will as well”

3/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

DRAT

LRAT

KIT

Karlsruhe Institute of Technology

aVvb
bVc
aVvece
del aVb

1765 : aV b | 823,1277
1766 : bV c | 1338, 54
1767 : aV ¢ | 1765, 1766
del 1765

SN
+ proof logging
Processing, checking

KIT | Algorithm Engineering

KIT

On-the-fly Checking with Sequential Solvers

Marijn Heule: Since LRAT checking is so efficient, we can feasibly do it in realtime!

mkfifo lratproof.pipe // create “pipe” file

// Solve & check concurrently via pipe gSAT — Checker
./solver input.cnf lratproof.pipe &
./lrat-check input.cnf lratproof.pipe

& No disk I/O, direct inter-process communication
@ Program code indistinguishable from plain file I/O (only difference: mkfifo)

413 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

On-the-fly Checking with Sequential Solvers

Marijn Heule: Since LRAT checking is so efficient, we can feasibly do it in realtime!

mkfifo lratproof.pipe // create “pipe” file

// Solve & check concurrently via pipe gSAT — Checker
./solver input.cnf lratproof.pipe &
./lrat-check input.cnf lratproof.pipe

& No disk I/O, direct inter-process communication
@ Program code indistinguishable from plain file I/O (only difference: mkfifo)
a to validate by independent parties

413 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

A First Parallel & Distributed Setup

Solver process

' v ' v

 SAT SAT SAT SAT
Mg o8 Wing o Mg i Wt ol
Checker Checker Checker Checker

513 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

e _ & - —
A

KIT

A First Parallel & Distributed Setup

Solver process

' ' ' v

 SAT SAT SAT SAT

I N S .
R g a0 Wind vl Wing ot
C C
Checker Checker Checker Checker
cv

513 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

SKIT

A First Parallel & Distributed Setup

Solver process

' ' /v v

USAT| |)sAT| |JsAT| |/ SAT

I
Ve e o
C C
Checker Checker Checker Checker
cv ci:

513 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

W=
A

KIT

A Question of Trust

Which components do we still need to trust?
@ Parser (reads correct formula correctly)

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

A Question of Trust

Which components do we still need to trust?
@ Parser (reads correct formula correctly)
@ Checker process (performs sound LRAT checking and responds accordingly)

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?
@ Parser (reads correct formula correctly)
@ Checker process (performs sound LRAT checking and responds accordingly)
® Solver process (does not forward unchecked clauses to sharing)

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

KIT

A Question of Trust

Which components do we still need to trust?
@ Parser (reads correct formula correctly)
@ Checker process (performs sound LRAT checking and responds accordingly)
® Solver process (does not forward unchecked clauses to sharing)
@ Distributed communication (does not compromise / corrupt / truncate a message)

6/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?

6/13

Parser (reads correct formula correctly)

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing)

Distributed communication (does not compromise / corrupt / truncate a message)
The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

2024-08-22

Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?

6/13

Parser (reads correct formula correctly)

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing)

Distributed communication (does not compromise / corrupt / truncate a message)
The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

2024-08-22

Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?

6/13

Parser (reads correct formula correctly)

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing)

Distributed communication (does not compromise / corrupt / truncate a message)
The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

2024-08-22

Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

A Question of Trust

Which components do we still need to trust?

Goal: Only need to trust the parser and checkers, nothing else!

6/13

Parser (reads correct formula correctly)

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing)

Distributed communication (does not compromise / corrupt / truncate a message)
The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)

2024-08-22

Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

KIT

Signatures (1/2)

/S\A
ID: 159514 | Lits: 4 V163 Vv 145 v 28 VV 158 d12e6a68fc3456e95d64a735555783d6

Assumption: Parser and checkers know a “secret” signature function &

713 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

Signatures (1/2)
/(_S‘\A
ID: 159514 | Lits: 4 vV 163 vV 145 \/ 28 \ 158 d12e6a68fc3456e95d64a735555783d6

Assumption: Parser and checkers know a “secret” signature function &

! Solver process

' ' ' '

¢ SAT 2 SAT 2 SAT 2 SAT

BN oS

Checker Checker Checker Checker

713 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT | Algorithm Engineering

KIT

Signatures (1/2)
/(_S‘\A
ID: 159514 | Lits: 4 vV 163 vV 145 \/ 28 \ 158 d12e6a68fc3456e95d64a735555783d6

Assumption: Parser and checkers know a “secret” signature function &

! Solver process

' ' ' '

¢ SAT 2 SAT 2 SAT 2 SAT

BN oS

Lel ,,,,* r"”” v
Base S(c) on S(F)! | Checker Checker Checker Checker

713 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

F,S(F) i

KIT | Algorithm Engineering

KIT

Signatures (1/2)
/(_S‘\A
ID: 159514 | Lits: 4 vV 163 vV 145 \/ 28 \ 158 d12e6a68fc3456e95d64a735555783d6

Assumption: Parser and checkers know a “secret” signature function &

! Solver process

' ' ' '

2 SAT 2 SAT 2 SAT 2 SAT

Lot g

g ,,,,* r"”” v
‘ 8(e)
Base S(c) on S(F)! Checker Checker Checker Checker

713 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

F,S(F) i

KIT | Algorithm Engineering

KIT

Signatures (1/2)

/(_S‘\A
ID: 159514 | Lits: 4 vV 163 vV 145 \/ 28 \ 158 d12e6a68fc3456e95d64a735555783d6

Assumption: Parser and checkers know a “secret” signature function &

Solver process

{ ; ; IR

2 SAT 2 SAT 2 SAT 2 SAT

FS(F)E
e L g

. ,,,,* r"”” v
‘ S(c)
Base S(c) on S(F)! Checker Checker Checker Checker

713 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

Signatures (1/2)

/(_S‘\A
ID: 159514 | Lits: 4 vV 163 vV 145 \/ 28 \ 158 d12e6a68fc3456e95d64a735555783d6

Assumption: Parser and checkers know a “secret” signature function &

i { ‘ & S(CV‘ ‘ T< ------------ -
F, S(F) 3 8 SAT 8 SAT lySAT g SAT 3 Clause‘sh ing
! | L ~__ :
; } P 0y oy o e ()
¢ g(c)
Base S(c) on S(F)! | Checker Checker Checker Checker
e S(c)W

713 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

Signatures (2/2)

@ General framework: Message Authentication Code (MAC)

& Allows trusted parties to sign and validate messages using shared secret K
® Ensures authenticity ()

8/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

Signatures (2/2)

@ General framework: Message Authentication Code (MAC)

& Allows trusted parties to sign and validate messages using shared secret K
® Ensures authenticity ()

® Chosen function: SipHash [AB12] — keyed hash function S(x) := Hk(x)

® Fast — only uses add-rotate-xor (ARX)
@ Popular, battle-tested, scrutinized

8/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

Signatures (2/2)

@ General framework: Message Authentication Code (MAC)

& Allows trusted parties to sign and validate messages using shared secret K
® Ensures authenticity ()

® Chosen function: SipHash [AB12] — keyed hash function S(x) := Hk(x)

® Fast — only uses add-rotate-xor (ARX)
@ Popular, battle-tested, scrutinized

a (parser, checkers) may know K

@ Ensure K is present only in memory space of trusted processes
® Current setup: K is hard-compiled into trusted processes

8/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

Signatures (2/2)

@ General framework: Message Authentication Code (MAC)

& Allows trusted parties to sign and validate messages using shared secret K
® Ensures authenticity ()

® Chosen function: SipHash [AB12] — keyed hash function S(x) := Hk(x)

® Fast — only uses add-rotate-xor (ARX)
@ Popular, battle-tested, scrutinized

a (parser, checkers) may know K

@ Ensure K is present only in memory space of trusted processes
® Current setup: K is hard-compiled into trusted processes

S(F):=Hk(F), S(c) = Hk(id(c) || c|| S(F)), S(L):=Hx(20]| S(F))

8/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Signatures (2/2)

@ General framework: Message Authentication Code (MAC)

& Allows trusted parties to sign and validate messages using shared secret K
® Ensures authenticity ()

® Chosen function: SipHash [AB12] — keyed hash function S(x) := Hk(x)

® Fast —only uses add-rotate-xor (ARX)
@ Popular, battle-tested, scrutinized

a (parser, checkers) may know K

@ Ensure K is present only in memory space of trusted processes
® Current setup: K is hard-compiled into trusted processes

S(F) := Hx(F), S(c):=Hk(id(c) || || S(F)), S(L):=Hx(20

8/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

| S(F))

KIT | Algorithm Engineering

KIT

Confidence

What breaks our approach?

Obtain S(_L) for satisfiable F

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

Confidence

What breaks our approach?

Find (c, S(c)) e Obtain S(L) for satisfiable F

where c is unsound w.r.t. F

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

Confidence

What breaks our approach?

Find (c, S(c)) e Obtain S(L) for satisfiable F

where c is unsound w.r.t. F

/

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

Confidence

What breaks our approach?

Find (c, S(c)) e Obtain S(L) for satisfiable F

/ where c is unsound w.r.t. F

— Find F' # F with S(F") = S(F)

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

KIT

Confidence

What breaks our approach?

% 1 . . .
Find (¢, §(c)) mmmd Obtain S(L) for satisfiable F

\‘ / where c is unsound w.r.t. F

— Find F' # F with S(F") = S(F)

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

SKIT

Confidence

What breaks our approach?

Find (c, 5(c)) sl Obtain S(1) for satisfiable F
\‘ where c is unsound w.r.t. F

/ /4

— Find F' # F with S(F") = S(F)

Security Claims of 128-bit SipHash

Forging a previously unseen pair (x, Sk(x)) succeeds with probability 27128 ~ 10,
Recovering K succeeds with probability 2128,

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Confidence ﬂ(IT

Karlsruhe Institute of Technology

What breaks our approach?

— Find (c, S(c))

) mamn al Obtain S(_L) for satisfiable F
\‘ / where c is unsound w.r.t. F

— Find F' # F with S(F") = S(F)

Security Claims of 128-bit SipHash

Forging a previously unseen pair (x, Sk(x)) succeeds with probability 27128 ~ 10,
Recovering K succeeds with probability 2128,

Intuition: Inadvertent bugs / errors / faults during solving “can’t do better” than deliberate attacks!

9/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Implementation

Implementation
® Distributed framework: MALLOBSAT [SS24]
@ Sequential solver: CADICAL with LRAT output [PFB23]

® Trusted modules: Parser, checker, confirmer

® Confirmer takes F and S(_L), validates S(L)
a Qverall = 1k effective lines of C99 code

Setup
@ < 32 compute nodes of HPC cluster HoreKa
® Per node: 2x38 cores (76 hardware threads), 256 GB RAM

@ SAT Competition 2023 benchmarks

& Time limits: 300 s wallclock time for solving,
1500 s for postprocessing + checking

1013 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

KIT

Overhead Relative to Proof-free Solving

Monolithic proofs [Mic+23]

ST
7 (252%) (271*) (280*)
6 .
=l . °
§59 . .
3 :
= .
£ dq - .
°© :
234 ;
= .
Zayp 4
= I S S
NS
© © ©
~ ~ ~
X X X

Overhead relative to solving time w/o LRAT outputs - ST: Solving time - TuP: Time until Proof present - TuV: Time until Validation done
*some data outside of displayed domain

1113 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Overhead Relative to Proof-free Solving

Monolithic proofs [Mic+23]

Overhead relative to solving time w/o LRAT outputs -

1113

ST TuP
7 (252*) (271*) (280*) (133) (146*) (141*)
6 1 | 151
< . °
54 . .
£51 -
44 : | 101
© !
o
Sy i
= I S S 3
TTT]HEY
O T ; T 0 T T T
Nej e e Ne e e
~ ~ ~ ~= ~ ~
X X X X X X

2024-08-22

ST: Solving time -

TuP: Time until Proof present -

*some data outside of displayed domain

Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

TuV: Time until Validation done

KIT | Algorithm Engineering

Overhead Relative to Proof-free Solving

Monolithic proofs [Mic+23]

Overhead relative to solving time w/o LRAT outputs -

1113

ST TuP TuVt
7 (252*) (271*) (280*) (133) (146*) (141*) 50 (132) (132) (127%)
6 . | 15
- . 40
E54 . .
£ :
L4q ¢ | 101 30 1
© :
.53' : . . 20
< M .
CRE R RS
== S | 3 % 10
2 4
T T 1] 11= % 1==] - |T|
O T T T 0 T T T 0 T T T
=} © O =} e =} =} =} =}
~ N~ ~ ~ I~ N~ ~ ~ N~
X X X X X X X X X

2024-08-22

ST: Solving time - TuP: Time until Proof present -

“some data outside of displayed domain - TData extrapolated

Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

TuV: Time until Validation done

KIT | Algorithm Engineering

Overhead Relative to Proof-free Solving

Monolithic proofs [Mic+23]

Overhead relative to solving time w/o LRAT outputs -

1113

ST TuP TuVt
7 (252*) (271*) (280*) (133) (146*) (141*) 50 (132) (132) (127%)
6 . | 15
- o 40 |
59 . s
£ :
L4q ¢ | 101 30 1
© :
.53' : . . 20
I R S
~ 1 . 4
== S | 3 % 10-%‘
2 4
T T 1] 1= % 1==] - |T|
O T T T 0 T T T 0 T T T
=} © O =} e =} =} =} =}
~ N~ ~ ~ I~ N~ ~ ~ N~
X X X X X X X X X

2024-08-22

ST: Solving time -
“some data outside of displayed domain -

Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

Relative overhead

KIT

Karlsruhe Institute of Technology

On-the-fly checking
ST (=TuV)

7.0 (254*) (268*) (278) (280*)

604 °

509 :

4.0 . : :

sof oo
! . .

2. . [

i 14

1.0 1

e

0.0 T T | T
e} =} Ne} o
= ~= = ~
X X X X
R B -

TuP: Time until Proof present - TuV: Time until Validation done
' Data extrapolated

KIT | Algorithm Engineering

KIT

. .
Discussion

v' Generic framework
® Requires
a |ndependent of structure, implementation of clause exchange

v' Extended to checking satisfying assignments
® One checker per solver process needs to remember all original problem clauses

1213 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

SKIT

Discussion

v Generic framework

® Requires LRAT-producing solver backends
a |ndependent of structure, implementation of clause exchange

v' Extended to checking satisfying assignments
® One checker per solver process needs to remember all original problem clauses
v" Works with malleable scheduling, i.e., with fluctuating set of workers

1213 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

SKIT

Discussion

v Generic framework

® Requires LRAT-producing solver backends
a |ndependent of structure, implementation of clause exchange

v' Extended to checking satisfying assignments

® One checker per solver process needs to remember all original problem clauses
v" Works with malleable scheduling, i.e., with fluctuating set of workers
I High memory usage (+60% compared to proof-less solving)

@ Compressing clauses in checkers?
® Parallel checking code with shared clause database?

1213 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Discussion ﬂ(IT

Karlsruhe Institute of Technology

v' Generic framework
® Requires
a |ndependent of structure, implementation of clause exchange
v' Extended to checking satisfying assignments
® One checker per solver process needs to remember all original problem clauses
v" Works with malleable scheduling, i.e., with fluctuating set of workers
! (compared to proof-less solving)
@ Compressing clauses in checkers?
® Parallel checking code with shared clause database?

? Formal verification of trusted processes? Cooperation wanted!

® Would result in first verified distributed SAT solver (in terms of correctness, not termination)
@ Extend projects like cake_1pr [THM23]?

a Verify (parts of) C99 codebase? BMC?

1213 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT | Algorithm Engineering

Conclusion
@ Bottleneck-free approach to on-the-fly proof checking
for distributed clause-sharing solving

® Trusted parties: Isolated parser and checker processes,
extending usual LRAT checking interface

® Saves an order of magnitude in running time overhead
over explicit proof production

@ Paves the road to verified distributed SAT solving

github.com/domschrei/impcheck

13/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

Performance

A

KIT

Karlsruhe Institute of Technology

A @ Proof-free parallel [SS24]

Parallel on-the-fl -
checking [here}ﬁ o &

Parallel proof prod. +
fast checking [Mic+23]

Sequential solving +
fast checking [PFB23]

_Sequential soIvin% +
verified checking [THNM23]

Verified solving [Fle19] @

»

Confidence

KIT | Algorithm Engineering

github.com/domschrei/impcheck

KIT

References

[AB12] Jean-Philippe Aumasson and Daniel J. Bernstein. “SipHash: a fast short-input PRF”. In: International Conference on Cryptology in India.
Springer. 2012, pp. 489-508. DOI: 10.1007/978-3-642-34931-7_28.

[FB22] Mathias Fleury and Armin Biere. “Scalable Proof Producing Multi-Threaded SAT Solving with Gimsatul through Sharing instead of Copying
Clauses”. In: Pragmatics of SAT. 2022.

[Fle19] Mathias Fleury. “Optimizing a verified SAT solver”. In: NASA Formal Methods: 11th International Symposium, NFM 2019, Houston, TX, USA,
May 7-9, 2019, Proceedings 11. Springer. 2019, pp. 148—165.

[HMP14] Marijn J. H. Heule, Norbert Manthey, and Tobias Philipp. “Validating Unsatisfiability Results of Clause Sharing Parallel SAT Solvers.”. In:
Pragmatics of SAT. 2014, pp. 12-25. DOI: 10.29007/6vwg.

[Mic+23] Dawn Michaelson et al. “Unsatisfiability proofs for distributed clause-sharing SAT solvers”. In: Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Springer. 2023, pp. 348-366. DOI: 10.1007/978-3-031-30823-9_18.

[PFB23] Florian Pollitt, Mathias Fleury, and Armin Biere. “Faster LRAT checking than solving with CaDiCaL". In: Theory and Applications of Satisfiability
Testing (SAT). Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, 2023. DOI: 10.4230/LIPIcs.SAT.2023.21.

[SS24] Dominik Schreiber and Peter Sanders. “MALLOBSAT: Scalable SAT Solving by Clause Sharing”. In: Journal of Artificial Intelligence Research
(JAIR) (2024). In press.

[THM23] Yong Kiam Tan, Marijn J. H. Heule, and Magnus Myreen. “Verified LRAT and LPR Proof Checking with cake_lpr”. In: SAT Competition. 2023,

1413 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

p. 89. URL: https://researchportal.helsinki.fi/files/269128852/sc2023_proceedings.pdf.

https://doi.org/10.1007/978-3-642-34931-7_28
https://doi.org/10.29007/6vwg
https://doi.org/10.1007/978-3-031-30823-9_18
https://doi.org/10.4230/LIPIcs.SAT.2023.21
https://researchportal.helsinki.fi/files/269128852/sc2023_proceedings.pdf

Intrinsic Scalability Issues

Bottleneck: assembly and checking of
a at final process
@ Sometimes of proof information

® Proof production + checking @ 1520 cores takes
(latest setup — submitted to JAR)

@ [ntuition “If solving fits info RAM, checking will as well”

1513 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

SN
+ proof logging
Processing, checking

KIT | Algorithm Engineering

Intrinsic Scalability Issues

Bottleneck: assembly and checking of
a at final process
@ Sometimes of proof information

® Proof production + checking @ 1520 cores takes
(latest setup — submitted to JAR)

@ [ntuition “If solving fits info RAM, checking will as well”

Our aim: Make checking scalable by
of a

1513 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT

Karlsruhe Institute of Technology

+ proof logging
Processing, checking

Solving with

on-the-fly checking

KIT | Algorithm Engineering

KIT

The (Un)Likelihood of 228

® Estimated (2007) probability of dying due to a local comet/asteroid impact: 1 in 5700000’
Whttp://www.boulder.swrl.edu/clark/binhaz(ﬂ.ppt

® Average human life span estimate (conservative): 80 years
® Probability of such an impact per millisecond: 1 in 5700000 - (80 - 365 - 24 - 3600 - 1000) ~ 1.4 - 10~ °
® Two unrelated impacts in the same millisecond: 10719 . 10710 = 103 ~ 2712

1 millisecond computation .

16/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

http://www.boulder.swri.edu/clark/binhaz07.ppt

KIT

The (Un)Likelihood of 228

® Estimated (2007) probability of dying due to a local comet/asteroid impact: 1 in 5700000’
1http://www.boulder.swrl.edu/clarK/binhazGﬁ.ppt

® Average human life span estimate (conservative): 80 years
® Probability of such an impact per millisecond: 1 in 5700000 - (80 - 365 - 24 - 3600 - 1000) ~ 1.4 - 10~ °
® Two unrelated impacts in the same millisecond: 10719 . 10710 = 103 ~ 2712

v »

1 millisecond computation .

16/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

http://www.boulder.swri.edu/clark/binhaz07.ppt

KIT

The (Un)Likelihood of 228

® Estimated (2007) probability of dying due to a local comet/asteroid impact: 1 in 5700000’
1http://www.boulder.swrl.edu/clarK/binhazGﬁ.ppt

® Average human life span estimate (conservative): 80 years
® Probability of such an impact per millisecond: 1 in 5700000 - (80 - 365 - 24 - 3600 - 1000) ~ 1.4 - 10~ °
® Two unrelated impacts in the same millisecond: 10719 . 10710 = 103 ~ 2712

v »

_ 1 millisecond computation .

® Same argument with cosmic radiation flipping two particular bytes (prob. 10~ per byte per sec.),
causing a formally verified checker to

16/13 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

http://www.boulder.swri.edu/clark/binhaz07.ppt

KIT

Checker Interface
Protocol realized via named pipes: INITIALIZING VALID
init(sig: Signature) — void produce
end_load (:;rnport
elete

load(formula: ClauseSet) — void

produce validate_unsat

end_load import
delete
validate_unsat

end_load() — bool load

produce(id: ID, lits: Clause, hints: IDList, share: bool)
— (bool, Signature?)

import(id: ID, lits: Clause, sig: Signature) — bool
delete(ids: IDList) — bool

validate_unsat() — (bool, Signature?)

INVALID

terminate() — void

1713 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT KIT | Algorithm Engineering

Results: Solving Time Overhead

18/13

1 node (76 cores)

+
1+

= 1 +

K102 5 +

5 E + ++ _"_""'t& L

& +£ ++ ++++

= 104 + ‘*‘

[y] +

2 * ##++ s

£ A

w100 f

=]] 3

g] ¥

3 1%

m 4

1071 AR | A | Ty T
10—t 100 10t 102

Solving time of M-NT [s]

M-NT: MALLOBSAT+CADICAL, no LRAT output

2024-08-22

Solving time of M-IMPCHK [s]

KIT

Karlsruhe Institute of Technology

32 nodes (2432 cores)

+ + +
E +
10% 4 * -
E b R
+
] + i
10! 5
] .
] + ¥ .
100 4 j‘ :
] +
1071 Ty AR | A | T
1071 10° 10! 102

Solving time of M-NT [s]

M-IMPCHK: MALLOBSAT+CADICAL + on-the-fly checking

Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

KIT | Algorithm Engineering

Results: Solving Times (w/o Assembly, Checking)

19/13

2024-08-22

300

250

<t

200

150 A

—_

]

o
1

instances solved in

0 T

0 60 120 180 240 300

Solving time ¢ [s]

Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

32X76 NT
32x76 IMpCHK
16X76 NT
16x76 ImpCHK
4X76 NT

4x76 PROOF
4x76 ImpCHK
1x76 NT

1x76 PROOF
1x76 IMPCHK
1x76 GIMS.
1x38 GIMS.

KIT

Karlsruhe Institute of Technology

KIT | Algorithm Engineering

