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Motivation

Distributed clause-sharing solvers push the frontier of feasible problems.

@ Many sequential CDCL solvers run in parallel
@ Careful exchange of useful conflict clauses
@ Mean speedup of 419 @ 3072 cores for difficult instances [SS24]
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Motivation

Distributed clause-sharing solvers push the frontier of feasible problems. 7
® Many sequential CDCL solvers run in parallel | %
@ Careful exchange of useful conflict clauses '
@ Mean speedup of 419 @ 3072 cores for difficult instances [SS24] [ g,

Proofs of unsatisfiability are central for trust in SAT solving.
@ Model checking critical software? claims safety!
a Suffices to trust independent proof checker (+ underlying technology)
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.
Motivation

Distributed clause-sharing solvers push the frontier of feasible problems.
® Many sequential CDCL solvers run in parallel
@ Careful exchange of useful conflict clauses
@ Mean speedup of 419 @ 3072 cores for difficult instances [SS24]

Proofs of unsatisfiability are central for trust in SAT solving.
@ Model checking critical software? claims safety!
a Suffices to trust independent proof checker (+ underlying technology)

Parallel & distributed solvers are than sequential solvers.
@ |arge technology stack leaves
@ More to test rigorously

@ Fragile — in a clause can induce a
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Producing proofs from parallel clause sharing is . avhb
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@ Popular DRAT format in parallel settings [HMP14; FB22] £ ave
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The Story Thus Far
Producing proofs from parallel clause sharing is
& Popular DRAT format in parallel settings [HMP14; FB22]

a Explicit dependency data in LRAT format allows for feasible
distributed proof production [Mic+23]
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The Story Thus Far

Producing proofs from parallel clause sharing is
& Popular DRAT format in parallel settings [HMP14; FB22]

a Explicit dependency data in LRAT format allows for feasible
distributed proof production [Mic+23]
Write individual partial proofs during solving
Rewind solving + sharing, required derivations into single file
Check combined proof file
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The Story Thus Far

Producing proofs from parallel clause sharing is
& Popular DRAT format in parallel settings [HMP14; FB22]

a Explicit dependency data in LRAT format allows for feasible
distributed proof production [Mic+23]
Write individual partial proofs during solving
Rewind solving + sharing, required derivations into single file
Check combined proof file

a Bottleneck: assembly and checking of
a at final process
® Sometimes of proof information

® Proof production + checking @ 1520 cores takes
(latest setup — submitted to JAR)
Intuition “If solving fits into RAM, checking will as well”
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1766 : bV c | 1338, 54
1767 : aV ¢ | 1765, 1766
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+ proof logging
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On-the-fly Checking with Sequential Solvers

Marijn Heule: Since LRAT checking is so efficient, we can feasibly do it in realtime!

mkfifo lratproof.pipe // create “pipe” file

// Solve & check concurrently via pipe gSAT — Checker
./solver input.cnf lratproof.pipe &
./lrat-check input.cnf lratproof.pipe

& No disk I/O, direct inter-process communication
@ Program code indistinguishable from plain file I/O (only difference: mkfifo)
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On-the-fly Checking with Sequential Solvers

Marijn Heule: Since LRAT checking is so efficient, we can feasibly do it in realtime!

mkfifo lratproof.pipe // create “pipe” file

// Solve & check concurrently via pipe gSAT — Checker
./solver input.cnf lratproof.pipe &
./lrat-check input.cnf lratproof.pipe

& No disk I/O, direct inter-process communication
@ Program code indistinguishable from plain file I/O (only difference: mkfifo)
a to validate by independent parties
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A First Parallel & Distributed Setup

Solver process
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A First Parallel & Distributed Setup

Solver process
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A Question of Trust

Which components do we still need to trust?
@ Parser (reads correct formula correctly)
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@ Parser (reads correct formula correctly)
@ Checker process (performs sound LRAT checking and responds accordingly)
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A Question of Trust

Which components do we still need to trust?
@ Parser (reads correct formula correctly)
@ Checker process (performs sound LRAT checking and responds accordingly)
® Solver process (does not forward unchecked clauses to sharing)
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A Question of Trust

Which components do we still need to trust?
@ Parser (reads correct formula correctly)
@ Checker process (performs sound LRAT checking and responds accordingly)
® Solver process (does not forward unchecked clauses to sharing)
@ Distributed communication (does not compromise / corrupt / truncate a message)
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A Question of Trust

Which components do we still need to trust?

6/13

Parser (reads correct formula correctly)

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing)

Distributed communication (does not compromise / corrupt / truncate a message)
The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)
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A Question of Trust

Which components do we still need to trust?

Goal: Only need to trust the parser and checkers, nothing else!

6/13

Parser (reads correct formula correctly)

Checker process (performs sound LRAT checking and responds accordingly)

Solver process (does not forward unchecked clauses to sharing)

Distributed communication (does not compromise / corrupt / truncate a message)
The seq. SAT solver (doesn’t forward an unsound clause as an axiom to the checker)
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Signatures (1/2)

/S\A
ID: 159514 | Lits: 4 V163 Vv 145 v 28 VV 158 d12e6a68fc3456e95d64a735555783d6

Assumption: Parser and checkers know a “secret” signature function &
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Signatures (1/2)
/(_S‘\A
ID: 159514 | Lits: 4 vV 163 vV 145 \/ 28 \ 158 d12e6a68fc3456e95d64a735555783d6

Assumption: Parser and checkers know a “secret” signature function &

! Solver process

' ' ' '
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Checker Checker Checker Checker
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ID: 159514 | Lits: 4 vV 163 vV 145 \/ 28 \ 158 d12e6a68fc3456e95d64a735555783d6

Assumption: Parser and checkers know a “secret” signature function &

! Solver process

' ' ' '
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/(_S‘\A
ID: 159514 | Lits: 4 vV 163 vV 145 \/ 28 \ 158 d12e6a68fc3456e95d64a735555783d6

Assumption: Parser and checkers know a “secret” signature function &

! Solver process

' ' ' '

2 SAT 2 SAT 2 SAT 2 SAT

Lot g

g ,,,,* r"”” v
‘ 8(e)
Base S(c) on S(F)! Checker Checker Checker Checker

713 2024-08-22 Schreiber: Trusted Scalable SAT w/ on-the-fly LRAT

F,S(F) i

KIT | Algorithm Engineering



KIT

Signatures (1/2)

/(_S‘\A
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Assumption: Parser and checkers know a “secret” signature function &

Solver process
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Signatures (1/2)

/(_S‘\A
ID: 159514 | Lits: 4 vV 163 vV 145 \/ 28 \ 158 d12e6a68fc3456e95d64a735555783d6

Assumption: Parser and checkers know a “secret” signature function &

i { ‘ & S(CV‘ ‘ T< ------------ -
F, S(F) 3 8 SAT 8 SAT lySAT g SAT 3 Clause‘sh ing
! | L ~__ :
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¢ g(c)
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Signatures (2/2)

@ General framework: Message Authentication Code (MAC)

& Allows trusted parties to sign and validate messages using shared secret K
® Ensures authenticity ( )
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@ General framework: Message Authentication Code (MAC)

& Allows trusted parties to sign and validate messages using shared secret K
® Ensures authenticity ( )

® Chosen function: SipHash [AB12] — keyed hash function S(x) := Hk(x)

® Fast — only uses add-rotate-xor (ARX)
@ Popular, battle-tested, scrutinized
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& Allows trusted parties to sign and validate messages using shared secret K
® Ensures authenticity ( )

® Chosen function: SipHash [AB12] — keyed hash function S(x) := Hk(x)

® Fast — only uses add-rotate-xor (ARX)
@ Popular, battle-tested, scrutinized

a (parser, checkers) may know K

@ Ensure K is present only in memory space of trusted processes
® Current setup: K is hard-compiled into trusted processes
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Signatures (2/2)

@ General framework: Message Authentication Code (MAC)

& Allows trusted parties to sign and validate messages using shared secret K
® Ensures authenticity ( )

® Chosen function: SipHash [AB12] — keyed hash function S(x) := Hk(x)

® Fast — only uses add-rotate-xor (ARX)
@ Popular, battle-tested, scrutinized

a (parser, checkers) may know K

@ Ensure K is present only in memory space of trusted processes
® Current setup: K is hard-compiled into trusted processes

S(F):=Hk(F), S(c) = Hk(id(c) || c|| S(F)), S(L):=Hx(20]| S(F))
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Signatures (2/2)

@ General framework: Message Authentication Code (MAC)

& Allows trusted parties to sign and validate messages using shared secret K
® Ensures authenticity ( )

® Chosen function: SipHash [AB12] — keyed hash function S(x) := Hk(x)

® Fast —only uses add-rotate-xor (ARX)
@ Popular, battle-tested, scrutinized

a (parser, checkers) may know K

@ Ensure K is present only in memory space of trusted processes
® Current setup: K is hard-compiled into trusted processes

S(F) := Hx(F ), S(c):=Hk(id(c) || || S(F)), S(L):=Hx(20
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Confidence

What breaks our approach?

Obtain S(_L) for satisfiable F
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Confidence

What breaks our approach?

Find (c, S(c)) e Obtain S( L) for satisfiable F

where c is unsound w.r.t. F
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What breaks our approach?

Find (c, S(c)) e Obtain S( L) for satisfiable F

where c is unsound w.r.t. F

/
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Confidence

What breaks our approach?

Find (c, S(c)) e Obtain S( L) for satisfiable F

/ where c is unsound w.r.t. F

— Find F' # F with S(F") = S(F)
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Confidence

What breaks our approach?

% 1 . . .
Find (¢, §(c)) mmmd Obtain S(L) for satisfiable F

\‘ / where c is unsound w.r.t. F

— Find F' # F with S(F") = S(F)
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Confidence

What breaks our approach?

Find (c, 5(c)) sl Obtain S( 1) for satisfiable F
\‘ where c is unsound w.r.t. F

/ /4

— Find F' # F with S(F") = S(F)

Security Claims of 128-bit SipHash

Forging a previously unseen pair (x, Sk(x)) succeeds with probability 27128 ~ 10,
Recovering K succeeds with probability 2128,
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What breaks our approach?

— Find (c, S(c))

) mamn al Obtain S(_L) for satisfiable F
\‘ / where c is unsound w.r.t. F

— Find F' # F with S(F") = S(F)

Security Claims of 128-bit SipHash

Forging a previously unseen pair (x, Sk(x)) succeeds with probability 27128 ~ 10,
Recovering K succeeds with probability 2128,

Intuition: Inadvertent bugs / errors / faults during solving “can’t do better” than deliberate attacks!
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Implementation

Implementation
® Distributed framework: MALLOBSAT [SS24]
@ Sequential solver: CADICAL with LRAT output [PFB23]

® Trusted modules: Parser, checker, confirmer

® Confirmer takes F and S(_L), validates S(L)
a Qverall = 1k effective lines of C99 code

Setup
@ < 32 compute nodes of HPC cluster HoreKa
® Per node: 2x38 cores (76 hardware threads), 256 GB RAM

@ SAT Competition 2023 benchmarks

& Time limits: 300 s wallclock time for solving,
1500 s for postprocessing + checking
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Overhead Relative to Proof-free Solving

Monolithic proofs [Mic+23]
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Overhead relative to solving time w/o LRAT outputs - ST: Solving time - TuP: Time until Proof present - TuV: Time until Validation done
*some data outside of displayed domain
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Monolithic proofs [Mic+23]
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On-the-fly checking
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. .
Discussion

v' Generic framework
® Requires
a |ndependent of structure, implementation of clause exchange

v' Extended to checking satisfying assignments
® One checker per solver process needs to remember all original problem clauses
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Discussion

v Generic framework

® Requires LRAT-producing solver backends
a |ndependent of structure, implementation of clause exchange

v' Extended to checking satisfying assignments

® One checker per solver process needs to remember all original problem clauses
v" Works with malleable scheduling, i.e., with fluctuating set of workers
I High memory usage (+60% compared to proof-less solving)

@ Compressing clauses in checkers?
® Parallel checking code with shared clause database?
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v' Generic framework
® Requires
a |ndependent of structure, implementation of clause exchange
v' Extended to checking satisfying assignments
® One checker per solver process needs to remember all original problem clauses
v" Works with malleable scheduling, i.e., with fluctuating set of workers
! ( compared to proof-less solving)
@ Compressing clauses in checkers?
® Parallel checking code with shared clause database?

? Formal verification of trusted processes? Cooperation wanted!

® Would result in first verified distributed SAT solver (in terms of correctness, not termination)
@ Extend projects like cake_1pr [THM23]?

a Verify (parts of) C99 codebase? BMC?
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Conclusion
@ Bottleneck-free approach to on-the-fly proof checking
for distributed clause-sharing solving

® Trusted parties: Isolated parser and checker processes,
extending usual LRAT checking interface

® Saves an order of magnitude in running time overhead
over explicit proof production

@ Paves the road to verified distributed SAT solving

github.com/domschrei/impcheck
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A @ Proof-free parallel [SS24]

Parallel on-the-fl -
checking [here}ﬁ o &

Parallel proof prod. +
fast checking [Mic+23]

Sequential solving +
fast checking [PFB23]

_Sequential soIvin% +
verified checking [THNM23]

Verified solving [Fle19] @

»

Confidence
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Intrinsic Scalability Issues

Bottleneck: assembly and checking of
a at final process
@ Sometimes of proof information

® Proof production + checking @ 1520 cores takes
(latest setup — submitted to JAR)

@ [ntuition “If solving fits info RAM, checking will as well”
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Intrinsic Scalability Issues

Bottleneck: assembly and checking of
a at final process
@ Sometimes of proof information

® Proof production + checking @ 1520 cores takes
(latest setup — submitted to JAR)

@ [ntuition “If solving fits info RAM, checking will as well”

Our aim: Make checking scalable by
of a
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The (Un)Likelihood of 228

® Estimated (2007) probability of dying due to a local comet/asteroid impact: 1 in 5700000’
Whttp://www.boulder.swrl.edu/clark/binhaz(ﬂ.ppt

® Average human life span estimate (conservative): 80 years
® Probability of such an impact per millisecond: 1 in 5700000 - (80 - 365 - 24 - 3600 - 1000) ~ 1.4 - 10~ °
® Two unrelated impacts in the same millisecond: 10719 . 10710 = 103 ~ 2712

1 millisecond computation .
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The (Un)Likelihood of 228

® Estimated (2007) probability of dying due to a local comet/asteroid impact: 1 in 5700000’
1http://www.boulder.swrl.edu/clarK/binhazGﬁ.ppt

® Average human life span estimate (conservative): 80 years
® Probability of such an impact per millisecond: 1 in 5700000 - (80 - 365 - 24 - 3600 - 1000) ~ 1.4 - 10~ °
® Two unrelated impacts in the same millisecond: 10719 . 10710 = 103 ~ 2712

v »

_ 1 millisecond computation .

® Same argument with cosmic radiation flipping two particular bytes (prob. 10~ per byte per sec.),
causing a formally verified checker to
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Checker Interface
Protocol realized via named pipes: INITIALIZING VALID
init(sig: Signature) — void produce
end_load (:;rnport
elete

load(formula: ClauseSet) — void

produce validate_unsat

end_load import
delete
validate_unsat

end_load() — bool load

produce(id: ID, lits: Clause, hints: IDList, share: bool)
— (bool, Signature?)

import(id: ID, lits: Clause, sig: Signature) — bool
delete(ids: IDList) — bool

validate_unsat() — (bool, Signature?)

INVALID

terminate() — void
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Results: Solving Time Overhead
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Results: Solving Times (w/o Assembly, Checking)
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